K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2018

\(P=\dfrac{1+2sin3xcos3x-\left(1-2sin^23x\right)}{1+2sin3xcos3x+2cos^2x-1}=\dfrac{2sin3xcos3x+2sin^23x}{2sin3xcos3x+2cos^23x}=\dfrac{sin3x}{cos3x}=tan3x\)

\(x=\dfrac{7\pi}{4}\Rightarrow P=tan\dfrac{21\pi}{4}=tan\dfrac{\pi}{4}=1\)

NV
23 tháng 4 2021

\(P=\dfrac{-2sin5x.sinx-sinx}{2sin5x.cosx+cosx}=\dfrac{-sinx\left(2sin5x+1\right)}{cosx\left(2sin5x+1\right)}=-tanx\)

26 tháng 9 2019

Chọn B.

Ta có A = sin6x + cos6x + 3sin2x.cos2x.

= ( sin2x)3 + (cos2x)3 + 3sin2x.cos2x.

= (sin2x + cos2x)3 - 3sin2x.cos2x(sin2x + cos2x) + 3.sin2x.cos2x

= 1 - 3.sin2x.cos2x + 3.sin2x.cos2x = 1

25 tháng 10 2018

Đáp án A.

23 tháng 11 2019

\(A=3\left[\left(sin^2x+cos^2x\right)^2-2\cdot sin^2x\cdot cos^2x\right]-2\left[\left(sin^2x+cos^2x\right)^3-3\cdot sin^2x\cdot cos^2x\left(sin^2x+cos^2x\right)\right]\)
 

\(=3\left[1-2\cdot sin^2x\cdot cos^2x\right]-2\left[1-3\cdot sin^2x\cdot cos^2x\right]\)

\(=3-6\cdot sin^2x\cdot cos^2x-2+6\cdot sin^2x\cdot cos^2x\)

=1

3 tháng 10 2017

a, Ta có:  sin 4 x + cos 4 x = sin 2 x + cos 2 x 2 - 2 sin 2 x . cos 2 x = 1 - 2 sin 2 x . cos 2 x

b, Ta có:  sin 6 x + cos 6 x = sin 2 x + cos 2 x 3 - 3 sin 2 x cos 2 x sin 2 x + cos 2 x =  1 - 3 sin 2 x cos 2 x

24 tháng 7 2018

21 tháng 7 2017

Chọn B.

Đề kiểm tra 45 phút Đại số 10 Chương 6 có đáp án (Đề 2)

14 tháng 10 2018

Chọn A.

Ta có:

+ sin4x + cos4x = (sin2x + cos2x)2 - 2sin2x.cos2x = 1 - 2sin2x.cos2x.

+ sin4x + cos4x = 1 - 3sin2x.cos2x.

Do đó

A = 3(1 - 2sin2x.cos2x) - 2(1 - 3sin2x.cos2x) = 1.