cho x,y,z >tìm GTNN của biểu thức P=\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunhia dạng phân thức cho 3 số ta có:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\begin{matrix}\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\\x,y,z>0;x+y+z=2\end{matrix}\)
\(\Leftrightarrow x=y=z=\dfrac{2}{3}\)
Áp dụng BĐT Svac-xơ cho 3 số dương có :
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{2}{3}\)
Vậy Min biểu thức cho là 1 khi \(x=y=z=\dfrac{2}{3}\)
Lời giải:
Bạn cần bổ sung điều kiện $x,y,z>0$
\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)
\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)
Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$
Xét hiệu:
\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$
$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:
$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Ta có: \(2x^3+2y^3-\left(x+y\right)\left(x^2+y^2\right)=\left(x-y\right)^2\left(x+y\right)\ge0\)
\(\Rightarrow\dfrac{x^3+y^3}{x^2+y^2}\ge\dfrac{x+y}{2}\)
Tương tự: \(\dfrac{y^3+z^3}{y^2+z^2}\ge\dfrac{y+z}{2}\) ; \(\dfrac{z^3+x^3}{z^2+x^2}\ge\dfrac{z+x}{2}\)
Cộng vế: \(P\ge x+y+z\ge6\)
\(P_{min}=6\) khi \(x=y=z=2\)
\(l=\dfrac{1}{x}+\dfrac{4}{y}+\dfrac{9}{z}=\dfrac{1^2}{x}+\dfrac{2^2}{y}+\dfrac{3^2}{z}\ge\dfrac{\left(1+2+3\right)^2}{x+y+z}=\dfrac{36}{1}=36\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{x^2}{x^2+2yz}+\frac{y^2}{y^2+2xz}+\frac{z^2}{z^2+2xy}\right)(x^2+2yz+y^2+2xz+z^2+2xy)\geq (x+y+z)^2\)
\(\Leftrightarrow P(x+y+z)^2\geq (x+y+z)^2\)
\(\Rightarrow P\geq 1\)
Vậy \(P_{\min}=1\)
Dấu bằng xảy ra khi \(x=y=z\)
\(P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\)
Áp dụng BDT Cô-si : \(a^2+b^2\ge2ab\)
\(\Rightarrow\left\{{}\begin{matrix}y^2+z^2\ge2yz\\x^2+z^2\ge2xz\\x^2+y^2\ge2xy\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2\ge x^2+2yz>0\\x^2+y^2+z^2\ge y^2+2xz>0\\x^2+y^2+z^2\ge z^2+2xy>0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x^2}{x^2+y^2+z^2}\le\dfrac{x^2}{x^2+2yz}\\\dfrac{y^2}{x^2+y^2+z^2}\le\dfrac{y^2}{y^2+2xz}\\\dfrac{z^2}{x^2+y^2+z^2}\le\dfrac{z^2}{z^2+2xy}\end{matrix}\right.\\ \Rightarrow P=\dfrac{x^2}{x^2+2yz}+\dfrac{y^2}{y^2+2xz}+\dfrac{z^2}{z^2+2xy}\\ \ge\dfrac{x^2}{x^2+y^2+z^2}+\dfrac{y^2}{x^2+y^2+z^2}+\dfrac{z^2}{x^2+y^2+z^2}\\ \ge\dfrac{x^2+y^2+z^2}{x^2+y^2+z^2}\ge1\forall x;y;z\)
Dấu "=" xảy ra khi \(:\left\{{}\begin{matrix}y=z\\x=z\\x=y\end{matrix}\right.\Leftrightarrow x=y=z\)
Vậy \(P_{Min}=1\) khi \(x=y=z\)
Ta sẽ CM BĐT phụ sau : \(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Áp dụng BĐT Cauchy dang Engel , ta có :
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}=\dfrac{3^2}{a+b+c}=\dfrac{9}{a+b+c}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge9\)
Trong đó : \(\left\{{}\begin{matrix}a=x+y\\b=y+z\\c=z+x\end{matrix}\right.\) , ta có :
\(\left(x+y+y+z+x+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)\ge9\)
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)\ge4,5\)
\(\Leftrightarrow\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{z+x}\ge4,5\)
\(\Leftrightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{x+z}\ge4,5\)
\(\Leftrightarrow\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{z+y}\ge1,5\)
\(\Rightarrow P_{Min}=1,5."="\Leftrightarrow x=y=z\)