(5.x-15).(x-4).(x-5)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, => |15-x| = 2+3
=> |15-x| = 5
=> 15-x = -5 hoặc 15-x = 5
=> x = 10 hoặc x = 10
Vậy ......
Tk mk nha
a/|15-x|=|-2|+|-3|
=>|15-x|=2+3=5
=>\(15-x=\hept{\begin{cases}5\\-5\end{cases}}\)
=>\(x=\hept{\begin{cases}10\\15\end{cases}}\)
.........
k nha , thanks
=> x-2=0 hoặc x+15=0
Th1: x-2=0
=> x=0+2
x=2
Th2: x+15=0
=> x=0-15
x=-15
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
a)
\(x^2-4\sqrt{15}x+19=0\\ < =>x^2-4\sqrt{15}x+60-41=0\\ < =>\left(x-2\sqrt{15}\right)^2-41=0\\ < =>\left(x-2\sqrt{15}-\sqrt{41}\right)\left(x-2\sqrt{15}+\sqrt{41}\right)=0\\ < =>\left[{}\begin{matrix}x-2\sqrt{15}-\sqrt{41}=0\\x-2\sqrt{15}+\sqrt{41}=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=2\sqrt{15}+\sqrt{41}\\x=2\sqrt{15}-\sqrt{41}\end{matrix}\right.\)
b)
\(4x^2+4\sqrt{5}x+5=0\\ < =>\left(2x+\sqrt{5}\right)^2=0\\ < =>2x+\sqrt{5}=0\\ < =>2x=-\sqrt{5}\\ < =>-\dfrac{\sqrt{5}}{2}\)
a: Δ=(4căn 15)^2-4*1*19=164>0
Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x=\dfrac{4\sqrt{5}-2\sqrt{41}}{2}=2\sqrt{5}-\sqrt{41}\\x_2=2\sqrt{5}+\sqrt{41}\end{matrix}\right.\)
b: \(\Leftrightarrow\left(2x\right)^2+2\cdot2x\cdot\sqrt{5}+5=0\)
=>(2x+căn 5)^2=0
=>2x+căn 5=0
=>x=-1/2*căn 5
a) \(5\left(x-7\right)=0\)
\(\Rightarrow x-7=0\)
\(\Rightarrow x=7\)
b) \(25\left(x-4\right)=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
c) \(\left(34-2x\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}34-2x=0\\2x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=34\\2x=6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=17\\x=3\end{matrix}\right.\)
d) \(\left(2019-x\right)\left(3x-12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2019-x=0\\3x-12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\3x=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2019\\x=\dfrac{12}{3}=4\end{matrix}\right.\)
e) \(57\left(9x-27\right)=0\)
\(\Rightarrow9x-27=0\)
\(\Rightarrow9\left(x-3\right)=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) 5.(x-7)=0⇔x-7=0⇔x=7
b) 25(x-4)=0⇔x-4=0⇔x=4
c) (34-2x).(2x-6)=0
⇔ 34-2x=0 hoặc 2x-6=0
⇔2x=34 hoặc 2x=6
⇔ x=17 hoặc x=3
d) (2019-x).(3x-12)=0
⇔ 2019-x=0 hoặc 3x-12=0
⇔ x=2019 hoặc x=4
e) 57.(9x-27)=0
⇔ 9x-27=0
⇔ x=3
f) 25+(15-x)=30
⇔ 15-x=5
⇔ x=10
g) 43-(24-x)=20
⇔ 24-x=23
⇔ x=1
h) 2.(x-5)-17=25
⇔ 2(x-5)=42
⇔x-5=21
⇔ x=26
i) 3(x+7)-15=27
⇔ 3(x+7)=42
⇔ x+7=14
⇔ x=7
j) 15+4(x-2)=95
⇔ 4(x-2)=80
⇔ x-2=20
⇔ x=22
k) 20-(x+14)=5
⇔ x+14=15
⇔ x=1
l) 14+3(5-x)=27
⇔ 3(5-x)=13
⇔ 5-x=13/3
⇔ x=5-13/3
⇔ x=2/3
14) (x - 2) . (x + 4) = 0
\(\Rightarrow\) x - 2 = 0 hoặc x + 4 = 0
Nếu x - 2 = 0
x = 0 + 2
x = 2
Nếu x + 4 = 0
x = 0 - 4
x = -4
Vậy x \(\in\) {2 ; -4)
15) (x - 2) . (x + 15) = 0
\(\Rightarrow\) x - 2 = 0 hoặc x + 15 = 0
Nếu x - 2 = 0
x = 0 + 2
x = 2
Nếu x + 15 = 0
x = 0 - 15
x = -15
Vậy x \(\in\) {-15 ; 2}
a: \(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -4\end{matrix}\right.\)
b: -2<x<5
4(x-3)2-320 = 0
=> 4(x-3)2 = 320
=> (x-3)2 = 320 : 4 = 80 = (8,94427191)2 = (-8,94427191)2
TH1:
x - 3 = 8,94427191
=> x = 11,94427191
TH2:
x - 3 = -8,94427191
=> x = -5,94427191
7(4+x)3-875 = 0
=> 7(4+x)3 = 875
=> (4+x)3 = 875:7 = 125 = 53
=> 4 + x = 5
=> x = 1
650 - 5(x+4)2 = 330
5(x+4)2 = 650 - 330 =320
=> (x+4)2 = 320 : 5 = 64 = 82
=> x+4 = 8
=> x = 4
3(5-x)2-15 = 60
=> 3(5-x)2 = 75
=> (5-x)2 = 25 = 52 =(-5)2
TH1:
5-x =5
=> x = 0
TH2: 5-x = -5
=> x = 10
a: \(\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -4\end{matrix}\right.\)
x = 3 ; 4 ; 5
BẠN SỬA DẤU '' VÀ '' BẰNG DẤU HOẶC NHÉ
\(\hept{\begin{cases}5x-15=0\\x-4=0\\x-5=0\end{cases}}\)
\(\hept{\begin{cases}x-3=0\\x-4=0\\x-5=0\end{cases}}\)
\(\hept{\begin{cases}x=3\\x=4\\x=5\end{cases}}\)
xin tiick