K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
10 tháng 4 2018

Lời giải:

Sử dụng liên hợp:

\(\lim_{x\to 0}\frac{\sqrt{x+1}+\sqrt{x+4}-3}{x}=\lim_{x\to 0}\frac{(\sqrt{x+1}-1)+(\sqrt{x+4}-2)}{x}\)

\(=\lim_{x\to 0}\frac{\frac{x}{\sqrt{x+1}+1}+\frac{x}{\sqrt{x+4}+2}}{x}=\lim_{x\to 0}\frac{1}{\sqrt{x+1}+1}+\frac{1}{\sqrt{x+4}+2}\)

\(=\frac{1}{\sqrt{0+1}+1}+\frac{1}{\sqrt{0+4}+2}=\frac{3}{4}\)

6 tháng 2 2021

Tui nghĩ cái này L'Hospital chứ giải thông thường là ko ổn :)

\(M=\lim\limits_{x\rightarrow0}\dfrac{\left(1+4x\right)^{\dfrac{1}{2}}-\left(1+6x\right)^{\dfrac{1}{3}}}{1-\cos3x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{2}\left(1+4x\right)^{-\dfrac{1}{2}}.4-\dfrac{1}{3}\left(1+6x\right)^{-\dfrac{2}{3}}.6}{3.\sin3x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-\dfrac{1}{4}.4\left(1+4x\right)^{-\dfrac{3}{2}}.4+\dfrac{2}{9}.6.6\left(1+6x\right)^{-\dfrac{5}{3}}}{3.3.\cos3x}\) 

Giờ thay x vô là được

\(N=\lim\limits_{x\rightarrow0}\dfrac{\left(1+ax\right)^{\dfrac{1}{m}}-\left(1+bx\right)^{\dfrac{1}{n}}}{\left(1+x\right)^{\dfrac{1}{2}}-1}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{1}{m}.\left(1+ax\right)^{\dfrac{1}{m}-1}.a-\dfrac{1}{n}\left(1+bx\right)^{\dfrac{1}{n}-1}.b}{\dfrac{1}{2}\left(1+x\right)^{-\dfrac{1}{2}}}=\dfrac{\dfrac{a}{m}-\dfrac{b}{n}}{\dfrac{1}{2}}\)

\(V=\lim\limits_{x\rightarrow0}\dfrac{\left(1+mx\right)^n-\left(1+nx\right)^m}{\left(1+2x\right)^{\dfrac{1}{2}}-\left(1+3x\right)^{\dfrac{1}{3}}}=\lim\limits_{x\rightarrow0}\dfrac{n\left(1+mx\right)^{n-1}.m-m\left(1+nx\right)^{m-1}.n}{\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{1}{2}}.2-\dfrac{1}{3}\left(1+3x\right)^{-\dfrac{2}{3}}.3}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{n\left(n-1\right)\left(1+mx\right)^{n-2}.m-m\left(m-1\right)\left(1+nx\right)^{m-2}.n}{-\dfrac{1}{2}\left(1+2x\right)^{-\dfrac{3}{2}}.2+\dfrac{2}{9}.3.3\left(1+3x\right)^{-\dfrac{5}{3}}}=....\left(thay-x-vo-la-duoc\right)\)

\(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-\sqrt[3]{8-x}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4+4x}-\sqrt[3]{8-x}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{4+4x}-2+2-\sqrt[3]{8-x}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x+4-4}{\sqrt{4x+4}+2}+\dfrac{8-8+x}{4+2\cdot\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{4x}{\sqrt{4x+4}+2}+\dfrac{x}{4+2\cdot\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{4}{\sqrt{4x+4}+2}+\dfrac{1}{4+2\cdot\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\)

\(=\dfrac{4}{\sqrt{4\cdot0+4}+2}+\dfrac{1}{4+2\cdot\sqrt[3]{8-0}+\sqrt[3]{\left(8-0\right)^2}}\)

\(=\dfrac{4}{2+2}+\dfrac{1}{4+2\cdot2+4}\)

\(=1+\dfrac{1}{12}=\dfrac{13}{12}\)

4 tháng 12 2023

loading...  

NV
5 tháng 3 2022

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+1}-\left(x+1\right)}{2x^2-x}=\lim\limits_{x\rightarrow0}\dfrac{\left(\sqrt{x^2+1}-\left(x+1\right)\right)\left(\sqrt{x^2+1}+x+1\right)}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2x}{x\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{-2}{\left(2x-1\right)\left(\sqrt{x^2+1}+x+1\right)}\)

\(=\dfrac{-2}{\left(0-1\right)\left(\sqrt{1}+1\right)}=1\)

a. \(\lim\limits_{x\rightarrow2}\dfrac{x-2}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{x+2}=\dfrac{1}{4}\)

b. \(\lim\limits_{x\rightarrow3^-}\dfrac{x+3}{x-3}=\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}\)

Do \(\lim\limits_{x\rightarrow3^-}\left(-x-3\right)=-6< 0\)

\(\lim\limits_{x\rightarrow3^-}\left(3-x\right)=0\) và \(3-x>0;\forall x< 3\)

\(\Rightarrow\lim\limits_{x\rightarrow3^-}\dfrac{-x-3}{3-x}=-\infty\)

28 tháng 2 2022

Ta xét:

\(\sqrt{1+2x}\cdot\sqrt[3]{1+3x}-1\)

\(=\sqrt{1+2x}-\sqrt{1+2x}+\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1\)

\(=\left(\sqrt{1+2x}-1\right)+\sqrt{1+2x}\cdot\left(\sqrt[3]{1+2x}-1\right)\)

Xét giới hạn trên:

\(\Rightarrow^{lim}_{x\rightarrow0}\dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1}{x}\)

   \(=^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}-1}{x}\right)+^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}\cdot\left(\sqrt[3]{1+2x}-1\right)}{3}\right)\)

Tính giới hạn từng thành phần:

\(^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}-1}{x}\right)=^{lim}_{x\rightarrow0}\left(\dfrac{1+2x-1}{x\left(\sqrt{1+2x}+1\right)}\right)\)

  \(=^{lim}_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+2x}+1}\right)=\dfrac{2}{\sqrt{1+2\cdot0}+1}=1\left(1\right)\)

\(^{lim}_{x\rightarrow0}\left(\dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1}{x}\right)\)

  \(=^{lim}_{x\rightarrow0}\left(\sqrt{1+2x}\cdot\dfrac{1+2x-1}{x\left(\left(\sqrt[3]{1+2x}\right)^2+\sqrt[3]{1+2x}+1\right)}\right)\)

  \(=^{lim}_{x\rightarrow0}\left(\sqrt{1+2x}\cdot\dfrac{2}{\left(\sqrt[3]{1+2x}\right)^2+\sqrt[3]{1+2x}+1}\right)\)

  \(=\sqrt{1+2\cdot0}\cdot\dfrac{2}{(\sqrt[3]{1+2\cdot0})^2+\sqrt[3]{1+2\cdot0}+1}\)

  \(=\dfrac{2}{3}\left(2\right)\)

Lấy \(\left(1\right)+\left(2\right)\) ta được:

\(^{lim}_{x\rightarrow0}\dfrac{\sqrt{1+2x}\cdot\sqrt[3]{1+2x}-1}{x}=1+\dfrac{2}{3}=\dfrac{5}{3}\)

a: \(\lim\limits_{x->0^-^-}\dfrac{-2x+x}{x\left(x-1\right)}=lim_{x->0^-}\left(\dfrac{-x}{x\left(x-1\right)}\right)\)

\(=lim_{x->0^-}\left(\dfrac{-1}{x-1}\right)=\dfrac{-1}{0-1}=\dfrac{-1}{-1}=1\)

b: \(=lim_{x->-\infty}\left(\dfrac{x^2-x-x^2+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-x+1}{\sqrt{x^2-x}+\sqrt{x^2-1}}\right)\)

\(=lim_{x->-\infty}\left(\dfrac{-1+\dfrac{1}{x}}{-\sqrt{1-\dfrac{1}{x^2}}-\sqrt{1-\dfrac{1}{x^2}}}\right)=\dfrac{-1}{-2}=\dfrac{1}{2}\)

 

19 tháng 2 2023

lỗi gõ câu a

\(=lim_{x->0}\left(\dfrac{1+x^2-1}{x^2\left(\sqrt[3]{\left(1+x^2\right)^2}+\sqrt[3]{1+x^2}+1\right)}\right)\)

\(=lim_{x->0}1=1\)

9 tháng 2 2021

làm bài lim xem nào :))) 

P/s Sở Kiều :))

Hướng làm thôi chứ gõ công thức lâu vl

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+x+1}-\sqrt[3]{x^3+1}}{x}\) 

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{x^2+x+1}-1}{x}+\dfrac{1-\sqrt[3]{x^3+1}}{x}\)

Đến đây liên hợp là xong phần của bạn đó ;) 

 

9 tháng 2 2021

Sai roi :v. M thử liên hợp lên t coi xem khử được ko :) Thách