Cho điểm M di động trên đoạn thẳng AB.Trên cùng một nửa mặt phẳng bờ AB vẽ các hình vuông AMCD,BMEF.
a. Chứng minh rằng \(AE\perp BC\)
b. Gọi H là giao điểm của AE và BC.Chứng minh ba điểm D,H,F thẳng hàng.
c. Chứng minh rằng đường thẳng DF luôn đi qua một điểm cố định khi điểm M di động trên đoạn thẳng AB.
a, \(\Delta AME=\Delta CMB\left(c.g.c\right)\Rightarrow\widehat{EAM}=\widehat{BCM}\)
Mà \(\widehat{BCM}+\widehat{CBM}=90^o\Rightarrow\widehat{EAM}+\widehat{CBM}=90^o\)
\(\Rightarrow\widehat{AHB}=90^o\)
Vậy \(AE\perp BC\)