K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

\(\left(d\right):y=kx+b\)

(d) đi qua N(-1;-2) nên ta có: \(-k+b=-2\Leftrightarrow k=b+2\)

\(\Rightarrow\left(d\right):y=\left(b+2\right)x+b\)

a)Hoành độ của A và B là 2 nghiệm của pt: \(x^2+\left(b+2\right)x+b=0\)

\(\Delta=\left(b+2\right)^2-4b=b^2+4>0\)

Vậy đường thẳng (d) luôn cắt (P) tại 2 điểm A\(\left(x_1;y_1\right)\) và B\(\left(x_2;y_2\right)\)

A, B nằm về 2 phía trục tung=>\(x_1,x_2\) trái dấu

Theo hệ thức Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-b-2\left(1\right)\\x_1x_2=b\left(2\right)\end{matrix}\right.\)

Từ (1) suy ra \(b< 0\Leftrightarrow k-2< 0\Leftrightarrow k< 2\)

b)Ta có: \(y_1=-x_1^2;y_2=-x_2^2\)

\(\Rightarrow x_1+y_1+x_2+y_2=x_1-x_1^2+x_2-x_2^2\\ =\left(x_1+x_2+2x_1x_2\right)-\left(x_1+x_2\right)^2\\ =\left(-b-2+2b\right)-\left(b+2\right)^2\\ =b-2-b^2-4b-4\\ =-b^2-3b-6=-\left(b+\dfrac{3}{2}\right)^2-\dfrac{15}{4}\)

\(\Rightarrow\)S đạt GTLN khi\(b=-\dfrac{3}{2}\Leftrightarrow k=\dfrac{1}{2}\)

1 tháng 4 2021

Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )

Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1

=> y=kx-1(d)

Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:

-x^2=kx-1

<=> x^2-kx-1=0 (1)

Xét phương trình có a=1;c=-1 => ac=-1 <0 

=> (1) luôn có 2 nghiệm phân biệt

=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt

9 tháng 6 2019

Gọi d: y=ax+ b

Đường thẳng d đi qua N( 1; -1) nên -1= a+ b

  suy ra b= -2.

Vậy hàm số cần tìm là  y= x-2.

Chọn B.

28 tháng 5 2019

Đáp án D

Chọn D

a: Để hàm số đồng biến thì m-3>0

=>m>3

b: Vì (d) đi qua O(0;0) và B(-1;2) nên ta có hệ:

0(m-3)+n=0 và -(m-3)+n=2

=>n=0 và m-3=-2

=>m=1 và n=0

c: Vì (d)//y=x-2 nên m-3=1

=>m=4

=>(d): y=x+n

Thay x=0 và y=5 vào (d), ta được:

n+0=5

=>n=5

=>(d): y=x+5

d: Vì (d) đi qua A(2;1) và B(3;0) nên ta có hệ:

2(m-3)+n=1 và 3(m-3)+n=0

=>2m-6+n=1 và 3m-9+n=0

=>2m+n=7 và 3m+n=9

=>m=2 và n=3

1 tháng 10 2018

a)d đi qua A(1;1)=>x=1;y=1

=> 1=a+b

d đi qua B(3;-2)=>x=3;y=-2

=>-2=3a+b 

Ta có hệ phương trình: \(\hept{\begin{cases}a+b=1\\3a+b=-2\end{cases}}\)

=> a=-3/2;b=5/2

Vậy (d): y=-3/2x+5/2

b)(D): x-y+1=0 => (D): y=x+1

d đi qua C(2;-2)=>x=2;y=-2

=>-2=2a+b

vì d//D=>a=1

=>-2=2+b

=>b=-4

Vậy (d): y=x-4

c) Mình ko bt làm nha, xin bạn thông cảm!!

d) d đi qua N(1;-1)=>x=1;y=-1

=>-1=a+b

vì d vuông góc với d': y=-x+3

=>a.-1=-1

=>a=1

=>b=-1

Vậy (d): y=x-1

a: loading...

b: Phương trình OA có dạng là y=ax+b

Theo đề, ta có hệ:

0a+b=0 và a+b=1

=>b=0 và a=1

=>y=x

Vì (d)//OA nên (d): y=x+b

Thay x=2 và y=0 vào (d), ta được:

b+2=0

=>b=-2

=>y=x-2

PTHĐGĐ là:

-x^2-x+2=0

vì a*c<0

nên (P) luôn cắt (d) tại hai điểm phân biệt

a: Thay x=4 và y=1 vào y=(m+1)x-3, ta được:

4(m+1)-3=1

=>4m+4-3=1

=>4m+1=1

hay m=0

b: Để hai đường vuông góc thì 5(m+1)=-1

=>m+1=-1/5

hay m=-6/5

c: Thay x=2 vào y=3x-1, ta được:

\(y=3\cdot2-1=5\)

Thay x=2 và y=5 vào (d), ta được:

2(m+1)-3=5

=>2(m+1)=8

=>m+1=4

hay m=3

8 tháng 12 2017

a>     gọi y=(m-2)x+n là (d)

         để (d) là hsbn thì m khác 2, với mọi n thuộc R

b>     hàm số đồng biến khi m>2

         nghịch biến khi m<2

c>     điều kiện để (d) // (d'): y=2x-1 <=> m-2=2 <=>m=4

                                                              và n khác -1

         vậy để (d) // (d') <=> m=4, m khác 2, n khác -1

d>      điều kiện để (d) cắt (d''): y=-3x+2 <=> m-2=-3 <=> m khác -1

           vậy để (d) cắt (d'') <=> m khác 2, m khác -1

e>      để (d) trùng (d'''): y=3x-2 <=> m-2=3 <=> m=5

                                                       và n = -2

          vậy để d//d''' <=> m khác 2, m=5, n=-2

f>       vì d đi qua A(1;2) => 2=m-2+n <=> m+n=4 (1). vì d đi qua B(3;4) => 4=3m-6+n <=> 3m+n = 10 (2) 

          lấy (2) trừ (1) <=>  2m=6 <=> m= 3 => n=1