K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.Trên nửa mặt phẳng bờ xz lấy A thuộc xz và Ay cắt xz tại A, At là phân giác góc xAy; Aq là phân giác xAz.

Có góc xAt=gócyAt

góc yAq=góc zAq

Nên 2.tAy+2.yAq=180độ

Hay 2.(tAy+yAq)=180độ 

tAy+yAq=90độ

Mà tAy+yAq=tAq tạo bởi 2 tia phân giác At và Aq

Vậy góc tạo bởi 2 tia phân giác 2 góc kề bù =90độ                                                                                          x y z t q

9 tháng 10 2015

A B C I M N

Ta sử dụng tính chất: hai tia phân giác của hai góc kề bù thì vuông góc với nhau

+) BM; BI là 2 tia p/g của góc B trong và ngoài tam giác => BM | BI  => góc MBI = 90o

CN và CI là 2 tia p/g của góc C trong và ngoài tam giác ABC => CN | CI => góc ICN = 90o

+) Xét tam giác MBC có: góc M + MCB + MBC = 180o => góc M + MCB +  (MBI + IBC)  = 180o

=> góc M + góc \(\frac{C}{2}\) + góc \(\frac{B}{2}\) + 90= 180=> góc M + góc \(\frac{B+C}{2}\) = 90=> góc M = 90o -  góc \(\frac{B+C}{2}\) = \(\frac{180^o-\left(B+C\right)}{2}=\frac{A}{2}\)

+) tương tự, ta có góc N =  góc A/2 

Vậy góc M = Góc N = góc A/2

b) đã làm ở bài trên

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IMa. Tính góc BACb.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau3)Cho tam giác ABC. Ở...
Đọc tiếp

1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH

2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau

3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều

4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD

0
21 tháng 10 2023

a: Xét ΔADC có góc ADB là góc ngoài tại đỉnh D

nên \(\widehat{ADB}=\widehat{DAC}+\widehat{C}\)

Xét ΔADB có góc ADC là góc ngoài tại đỉnh D

nên \(\widehat{ADC}=\widehat{DAB}+\widehat{B}=\widehat{DAC}+\widehat{B}\)

\(\widehat{ADC}-\widehat{ADB}\)

\(=\widehat{DAC}+\widehat{B}-\widehat{DAC}-\widehat{C}\)

\(=\widehat{ABC}-\widehat{ACB}\)

b: Vì AD và AE là hai tia phân giác của hai góc kề bù

nên AD vuông góc AE

=>ΔDAE vuông tại A

ΔDAE vuông tại A

=>\(\widehat{AEB}+\widehat{ADB}=90^0\)

=>\(\widehat{AEB}+\left(\dfrac{1}{2}\widehat{BAC}+\widehat{C}\right)=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}\)

=>\(\widehat{AEB}=\dfrac{1}{2}\widehat{BAC}+\dfrac{1}{2}\widehat{ABC}+\dfrac{1}{2}\widehat{ACB}-\dfrac{1}{2}\widehat{BAC}-\widehat{C}\)

=>\(\widehat{AEB}=\dfrac{1}{2}\left(\widehat{ABC}-\widehat{ACB}\right)\)