K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2021

Xét $(O)$ có: $\widehat{MCA}=\widehat{CBA}$ (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung $CA$)

hay $\widehat{MCA}=\widehat{MBC}$

Xét $ΔMCA$ và $ΔMBC$ có:

$\widehat{MCA}=\widehat{MBC}$
$\widehat{M}$ chung 

$⇒ΔMCA \backsim ΔMBC(g.g)$

\(\Rightarrow\dfrac{MC}{MB}=\dfrac{MA}{MC}\Rightarrow MC^2=MA.MB\)

b, Xét $(O)$ có: $MC$ là tiếp tuyến của đường tròn
\(\Rightarrow MC\perp OC\)

hay $ΔMCO$ vuông tại $C$

có: đường cao $MH$ 

nên $MC^2=MH.MO$ (hệ thức lượng trong tam giác vuông)

Mà $MC^2=MA.MB$ nên $MA.MB=MH.MO$

suy ra \(\Rightarrow\dfrac{MA}{MO}=\dfrac{MH}{MB}\)

$\widehat{M}$ chung

Nên $ΔMAH \backsim ΔMOB(c.g.c)$

nên $\widehat{MHA}=\widehat{MBO}$
hay $\widehat{MHA}=\widehat{ABO}$

suy ra tứ giác $AHOB$ nội tiếp (góc ngoài tại 1 đỉnh = góc trong đỉnh đối diện)undefined

3 tháng 12 2021

Gọi giao điểm của MN và Ox là điểm A; giao điểm của MN và Oy là điểm B.

Ta có: N là điểm đối xứng với M qua Ox (gt).

           O \(\in\) Ox.

=> \(\left\{{}\begin{matrix}OA\perp MN.\\\text{ON = OM.(1)}\end{matrix}\right.\) 

Ta có: P là điểm đối xứng với M qua Oy (gt).

           O \(\in\) Oy.

=> \(\left\{{}\begin{matrix}OB\perp MP.\\\text{OM = OP.(2)}\end{matrix}\right.\)

Từ (1) và (2) => OP = ON = OM.

Xét tam giác NOM có: ON = OM (cmt).

=> Tam giác NOM cân tại O.

Mà OA là đường cao (do OA vuông góc MN).

=> OA là phân giác của ^NOM (Tính chất các đường trong tam giác cân).

=> ^NOA = ^AOM.

Xét tam giác MOP có: OP = OM (cmt).

=> Tam giác MOM cân tại O.

Mà OB là đường cao (do OB vuông góc MP).

=> OB là phân giác của ^MOP (Tính chất các đường trong tam giác cân).

=> ^MOB = ^BOP.

Ta có: ^NOA + ^AOM + ^MOB + ^BOP.

=  2. ^AOM + 2. ^MOB.

= 2. (^AOM + ^MOB).

= 2. ^AOB.

= 2. 90o = 180o.

=> 3 điểm N; O; P thẳng hàng.

Mà OP = ON (cmt).

=> O là trung điểm của NP.

=> P và N đối xứng nhau qua O (đpcm).

 

 

3 tháng 2 2017

O x y A B C D E F I H K M
Theo đề bài ta có I là trung điểm đoạn EF => I thuộc tia phân giác góc xOy => góc EOI = góc FOI
Cho H,K là chân các đường vuông góc hạ từ M xuống các tia Ox, Oy => \(MH⊥Ox;MK⊥Oy\)(1)
ta có : góc MHO = góc MKO = 900
=> tứ giác OHMK nội tiếp  => góc MOK = góc MHK(cùng chắn cung MK),góc  MOH = góc HKM (cùng chắn cung HM)
Mà góc MOK = góc MOH (cmt) nên góc MHK = góc HKM => tam giác MHK cân tại M => MH = MK (2)
Từ (1) và (2) => M thuộc đường phân giác của góc xOy
Vì I và M đều thuộc tia phân giác của góc xOy nên I,OM thẳng hàng
p/s còn nhiều cách khác .vd: (dùng hình vẽ trên) : chứng minh 2 tam giác HMO = tam giác KMO( tam giác vuông có cạnh OM chung và góc HOM = góc MOK) => MH=MK -> phần sau làm tương tự.............[cách này ngắn hơn nhưng không dùng cho lớp 9 HKII]

1 tháng 2 2017

Chưa học

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: Xét tứ giác MAOB có

góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: Xét ΔMAN và ΔMPA có

góc MAN=góc MPA

góc AMN chung

=>ΔMAN đồng dạng với ΔMPA

=>MA/MP=MN/MA

=>MA^2=MN*MP

c: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB tại i

Xét ΔOAM vuông tại A có AI là đường cao

nên OI*OM=OA^2

=>OI*OM=R^2 ko đổi

16 tháng 3 2023

`a)`

Có `IH⊥Ox=>hat(H_1)=90^0`

`IK⊥Oy=>hat(K_1)=90^0`

Xét `Delta KIO` và `Delta HIO` có :

`{:(hat(K_1)=hat(H_1)(=90^0)),(OI-chung),(IK=IH(GT)):}}`

`=>Delta KIO=Delta HIO(c.h-c.g.v)(đpcm)`

`b)`

Có `Delta KIO=Delta HIO(cmt)=>hat(O_1)=hat(O_2)` ( 2 góc t/ứng )

mà `OI` nằm giữa `Ox` và `Oy(I in hat(xOy))`

nên `OI` là p/g của `hat(xOy)(đpcm)`

12 tháng 3 2017

Giải bài 54 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

+ B đối xứng với A qua Ox

⇒ Ox là đường trung trực của AB

⇒ OA = OB (1)

+ C đối xứng với A qua Oy

⇒ Oy là đường trung trực của AC

⇒ OA = OC (2)

Từ (1) và (2) suy ra OB = OC (*).

+ Xét ΔOAC cân tại O (do OA = OC) có Oy là đường trung trực

⇒ Oy đồng thời là đường phân giác

Giải bài 54 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

Xét ΔOAB cân tại O có Ox là đường trung trực

⇒ Ox đồng thời là đường phân giác

Giải bài 54 trang 96 Toán 8 Tập 1 | Giải bài tập Toán 8

⇒ B, O, C thẳng hàng (**)

Từ (*) và (**) suy ra O là trung điểm BC

⇒ B đối xứng với C qua O.