Cho tam giác ABC cân tại A ( Â < 90 độ ) vẽ đường cao AH .
a) CM : tam giác ABH = tam giác ACH
b) Trên tia đối của tia HA lấy điểm D sao cho HA = HD . CM : AC = DC
c) Gọi E là trung điểm của AB , AH cắt CE tại G . CM đường thẳng BG đi qua trung điểm F của AC
d) Đường thẳng BF cắt đường thẳng DC tại K . CM tam giác AKD vuông .
a) Xét \(\Delta\)AHB vuông tại H và \(\Delta\)AHC vuông tại H có:
AH là cạnh chung
AB = AC (Vì \(\Delta\)ABC cân)
\(\Rightarrow\) \(\Delta\)AHB = \(\Delta\)AHC (ch + 1cgv)
b) Xét \(\Delta\)DHC vuông tại H và \(\Delta\)AHC vuông tại H, có:
CH là cạnh chung
HD = HA (gt)
\(\Rightarrow\) \(\Delta\)DHC = \(\Delta\)AHC (2cgv)
\(\Rightarrow\) DC = AC (2 cạnh tương ứng)
Nguyễn Ngô Minh Trí
hình và phần a bạn tham khảo của Kien Nguyen
b) Vì AH = HD (gt) mà H \(\in\) AD (gt)
=> H trung điểm AD (ĐN trung điểm)
=> CH là trung tuyến \(\Delta\)CAH (ĐN trung tuyến)
lại có: AH \(\perp\) BC (gt) hay AD \(\perp\) CH (D \(\in\) AH, H \(\in\) BC)
=> \(\Delta\)ACD cân tại C (dhnb)
=> AC = CD (ĐN \(\Delta\) cân)
c) Vì AH là đường cao của \(\Delta\)ABC (gt)
mà \(\Delta\)ABC cân tại A (gt)
=> AH là trung tuyến \(\Delta\)ABC (t/c \(\Delta\) cân)
Ta có: E trung điểm AB (gt)
=> CE là trung tuyến \(\Delta\)ABC (ĐN trung tuyến)
Xét \(\Delta\)ABC có: AH là trung tuyến BC (cmt)
CE là trung tuyến AB (cmt)
AH giao CE tại G (gt)
=> G là trọng tâm \(\Delta\)ABC (t/c 3 đường trung tuyến \(\Delta\))
=> BG là trung tuyến \(\Delta\)ABC (ĐN trọng tâm)
mà F là trung điểm AC (gt)
=> BG đi qua trung điểm F của AC