K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2021

ĐKXĐ : x khác -1

\(\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+3x+4}{x+1}\\ \Leftrightarrow\dfrac{x^2+2x+2}{x+1}\ge\dfrac{x^2+2x+2}{x+1}+\dfrac{x+2}{x+1}\\ \Leftrightarrow\dfrac{x+2}{x+1}\le0\\ \Leftrightarrow x+2\ge0;x+1< 0\Leftrightarrow-1>x\ge-2\)

a: =>5(2-x)<3(3-2x)

=>10-5x<9-6x

=>x<-1

b: =>2/9x+5/3>=1/5x-1/5+1/3x

=>2/9x+5/3>=8/15x-1/5

=>-14/45x>=-28/15

=>x<=6

câu 1 giải các phương trình sau.a) 4x+8=3x-15b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục sốa) 2x-8\(\ge\)0.b)10+10x>0câu 3 giải bài toán bằng các lập phương trìnhMột học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh...
Đọc tiếp

câu 1 giải các phương trình sau.

a) 4x+8=3x-15

b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)

câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số

a) 2x-8\(\ge\)0.

b)10+10x>0

câu 3 giải bài toán bằng các lập phương trình

Một học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường từ nhà đến trường của người đó.

câu 4 Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB(AH\(\perp\)DB,H\(\in\)DB).

a) Chúng minh \(\Delta\)HAD đồng dạng \(\Delta\)ABD.

b) Chứng minh:AD\(^2\)=DH.DB.

c)Tính độ dài các đoạn thẳng AH,DH.

d) Tính tỉ số diện tích \(\Delta\)HAD và \(\Delta\)ABD từ đó suy ra tỉ số đồng dạng của nó.

         giúp mình với mai mình thi rồi SOS !!!!!!!

 

 

1

2:

a: =>x-4>=0

=>x>=4

b: =>x+1>0

=>x>-1

19 tháng 8 2021

a) \(\dfrac{2x+1}{x-2}=3\Rightarrow2x+1=3x-6\Rightarrow x=7\)

b) \(\dfrac{2x-3}{x+1}=\dfrac{1}{2}\Rightarrow4x-6=x+1\Rightarrow3x=7\Rightarrow x=\dfrac{7}{3}\)

19 tháng 8 2021

a) \(\dfrac{2x+1}{x-2}=3\)

dkxd : x ≠ 2

MTC : x - 2

Quy đồng mẫu thức : 

⇒ \(\dfrac{2x+1}{x-2}=\dfrac{3\left(x-2\right)}{x-2}\)

Suy ra : 2x + 1 = 3(x - 2)

      \(\) \(\Leftrightarrow\) 2x + 1 = 3x - 6

       \(\Leftrightarrow\) 2x + 1 - 3x + 6 = 0

      \(\Leftrightarrow\) -1x + 7 = 0

     \(\Leftrightarrow\) -1x = -7

    \(\Leftrightarrow\) x = \(\dfrac{-7}{-1}=7\)

 Vậy S = \(\left\{7\right\}\)

b) \(\dfrac{2x-3}{x+1}=\dfrac{1}{2}\)

dkxd : x ≠ -1

MTC : 2(x + 1)

Quy đồng mẫu thức : 

⇒ \(\dfrac{2\left(2x-3\right)}{2\left(x+1\right)}=\dfrac{1\left(x+1\right)}{2\left(x+1\right)}\)

Suy ra : 2(2x - 3) = x + 1

        \(\Leftrightarrow\) 4x - 6 - x - 1 = 0

       \(\Leftrightarrow\) 3x - 7 = 0

       \(\Leftrightarrow\) 3x = 7

      \(\Leftrightarrow\) x = \(\dfrac{7}{3}\)

   Vậy S = \(\left\{\dfrac{7}{3}\right\}\)

 Chúc bạn học tốt

 

11 tháng 8 2021

\(1,\dfrac{4x-4}{3}=\dfrac{7-x}{5}\\ \Leftrightarrow5\left(4x-4\right)=3\left(7-x\right)\\ \Leftrightarrow20x-20=21-3x\\ \Leftrightarrow17x=41\Leftrightarrow x=\dfrac{41}{17}\)

\(2,\dfrac{3x-9}{5}=\dfrac{3-x}{2}\\ \Leftrightarrow6x-18=15-5x\\ \Leftrightarrow11x=33\\ \Leftrightarrow x=3\)

\(3,\dfrac{2x-1}{5}-\dfrac{3-x}{3}=1\\ \Leftrightarrow\dfrac{6x-3-15+5x}{15}=1\\ \Leftrightarrow11x-18=1\\ \Leftrightarrow x=\dfrac{19}{11}\)

\(4,\dfrac{x-5}{3}+\dfrac{3x+4}{2}=\dfrac{5x+2}{6}\\ \Leftrightarrow2x-10+9x+12=5x+2\\ \Leftrightarrow6x=0\Leftrightarrow x=0\)

\(5,\dfrac{x-3}{2}+\dfrac{2x+3}{5}=\dfrac{2x+5}{10}\\ \Leftrightarrow5x-15+4x+6=2x+5\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=2\)

Tick nha

2: Ta có: \(\dfrac{3x-9}{5}=\dfrac{3-x}{2}\)

\(\Leftrightarrow6x-18=15-5x\)

\(\Leftrightarrow11x=33\)

hay x=3

28 tháng 1 2022

1) \(ĐK:x\ne2\) 

Nếu \(x>2\) 

BPT ⇔ \(x^2-2x+5-\left(x-1\right)\left(x-2\right)\ge0\) ⇔ \(x^2-2x+5-\left(x^2-3x+3\right)\ge0\)

\(x+2\ge0\) ⇔\(x\ge-2\) ⇒ Lấy \(x\ge2\)

Nếu \(x< 2\)

BPT ⇔\(\dfrac{-\left(x^2-2x+5\right)}{x-2}-x+1\ge0\) ⇔\(-x^2+2x-5-\left(x-1\right)\left(x-2\right)\ge0\)

\(-x^2+2x-5-x^2+3x-2\ge0\)

\(-2x^2+5x-7\ge0\)

\(x^2-\dfrac{5}{2}x+\dfrac{7}{2}\le0\)

\(\left(x-\dfrac{5}{4}\right)^2\le\dfrac{11}{4}\)

\(\left[{}\begin{matrix}x-\dfrac{5}{4}\le\dfrac{11}{4}\\x-\dfrac{5}{4}\le\dfrac{-11}{4}\end{matrix}\right.\) ⇔\(\left[{}\begin{matrix}x\le4\\x\le\dfrac{-3}{2}\end{matrix}\right.\) ⇔ \(x\le\dfrac{-3}{2}\) 

S= [2;+∞)U(-∞;\(\dfrac{-3}{2}\)]

28 tháng 1 2022

2) \(ĐK:x\ne-1\) 

Nếu \(x>-1\) 

BPT ⇔ \(2x-3-2\left(x+1\right)< 0\) ⇔\(2x-3-2x-2< 0\)

 ⇔\(-5< 0\) ( luôn đúng với mọi \(x>-1\))

Nếu \(x< -1\)

BPT⇔\(\dfrac{-\left(2x-3\right)}{x+1}-2< 0\) ⇔\(-\left(2x-3\right)-2\left(x+1\right)< 0\) ⇔\(-4x+1< 0\) ⇔ \(x>\dfrac{-1}{4}\)

Vậy S=....

16 tháng 3 2021

1.

ĐK: \(x\ne7;x\ne-1;x\ne3\)

\(\dfrac{2x-5}{x^2-6x-7}\le\dfrac{1}{x-3}\left(1\right)\)

TH1: \(x< -1\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\ge x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\ge x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\ge0\)

\(\Leftrightarrow\) Bất phương trình đúng với mọi \(x< -1\)

TH2: \(-1< x< 3\)

\(\left(1\right)\Leftrightarrow\left(3-x\right)\left(2x-5\right)\ge\left(7-x\right)\left(x+1\right)\)

\(\Leftrightarrow-2x^2+11x-15\ge-x^2+6x+7\)

\(\Leftrightarrow-x^2+5x-22\ge0\)

\(\Rightarrow\) vô nghiệm

TH3: \(3< x< 7\)

Khi đó \(\dfrac{2x-5}{x^2-6x-7}\le0\)\(\dfrac{1}{x-3}>0\)

\(\Rightarrow\) Bất phương trình đúng với mọi \(3< x< 7\)

TH4: \(x>7\)

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x-3\right)\le x^2-6x-7\)

\(\Leftrightarrow2x^2-11x+15\le x^2-6x-7\)

\(\Leftrightarrow x^2-5x+22\le0\)

\(\Rightarrow\) vô nghiệm

Vậy ...

Các bài kia tương tự, chứ giải ra mệt lắm.