K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.

10 tháng 8 2023

tử vế phải là 3 hay 2 vậy bạn.

23 tháng 9 2017

Hay 1 cách khác :AM-GM

\(\dfrac{b}{a^2}+\dfrac{c}{a^2}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{1}{a^4}}=\dfrac{4}{a}\)

Tương tự là ta có ngay đpcm

23 tháng 9 2017

Một cách đơn giản nhất tương đương ( hay còn gọi là SOS)

\(BĐT\Leftrightarrow\sum\dfrac{b+c-2a}{a^2}\ge0\)

\(\Leftrightarrow\sum\left(\dfrac{b-a}{a^2}+\dfrac{c-a}{a^2}\right)\ge0\)

Nhóm lại: \(\Leftrightarrow\sum\left(\dfrac{a-b}{b^2}+\dfrac{b-a}{a^2}\right)\ge0\)

\(\Leftrightarrow\sum\left(a-b\right)^2.\left(\dfrac{a+b}{a^2b^2}\right)\ge0\)(đúng)

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c

28 tháng 3 2017

Có nhiều cách lắm. T đơn cử 1 cách nhé

\(\sum\dfrac{a}{b+c}=\sum\dfrac{a^2}{ab+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)

29 tháng 3 2017

\(A=\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)

3+A=\(\dfrac{a}{b+c}+1+\dfrac{b}{a+c}+1+\dfrac{c}{a+b}+1\)

3+A=\(\left(a+b+c\right)\left(\dfrac{1}{b+c}+\dfrac{1}{a+c}+\dfrac{1}{a+b}\right)\)

đặtx=a+b;y=a+c;z=b+c

=>3+A=\(\dfrac{1}{2}\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

mà (x+y+z)(\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\))\(\ge\)9

=>3+A\(\ge\dfrac{9}{2}\)

=>A\(\ge\dfrac{3}{2}\)

27 tháng 3 2017

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c\)

3 tháng 5 2018

bạn ơi, bài này sai đề rồi

25 tháng 7 2018

Ta có: BĐT\(\Leftrightarrow\dfrac{a}{a+b}-\dfrac{1}{2}+\dfrac{b}{b+c}-\dfrac{1}{2}+\dfrac{c}{c+a}-\dfrac{1}{2}\ge0\)

\(\Leftrightarrow\dfrac{2a-\left(a+b\right)}{2\left(a+b\right)}+\dfrac{2b-\left(b+c\right)}{2\left(b+c\right)}+\dfrac{2c-\left(c+a\right)}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2\left(a+b\right)}+\dfrac{b-a+a-c}{2\left(b+c\right)}+\dfrac{c-a}{2\left(c+a\right)}\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+\dfrac{a-c}{2}\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)\ge0\)

\(\Leftrightarrow\dfrac{a-b}{2}\left(\dfrac{c-a}{\left(a+b\right)\left(b+c\right)}+\dfrac{a-c}{\left(b+c\right)\left(c+a\right)}\right)\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) (đúng)

Vậy BĐT luôn đúng với \(a\ge b\ge c>0\)

2 tháng 3 2019

Áp dụng BĐT Cô si cho các số dương ta có :

\(+,\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge2\sqrt{\dfrac{a^2}{b^2}.\dfrac{b^2}{c^2}}=\dfrac{2a}{c}\left(1\right)\)

Cmtt ta có : +, \(\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2b}{a}\left(2\right)\)

+, \(\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}\ge\dfrac{2c}{b}\left(3\right)\)

Cộng vế với vế của các BĐT \(\left(1\right),\left(2\right),\left(3\right)\) ta được :

\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\right)\)

\(\Leftrightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{c}{b}+\dfrac{b}{a}+\dfrac{a}{c}\left(đpcm\right)\)

2 tháng 3 2018

\(\dfrac{a}{a+b}\le\dfrac{a}{2b}\). So you are wrong

1 tháng 3 2018

Ta có: \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\ge\dfrac{a}{2b}+\dfrac{b}{2c}+\dfrac{c}{2a}=\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\right)\)

\(\ge\dfrac{1}{2}.3=\dfrac{3}{2}\) ( BĐT AM - GM )

Dấu " = " khi a = b = c

\(\Rightarrowđpcm\)