K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

câu hỏi tương tự

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

a: Xét ΔAHB và ΔAHC có 

AH chung

HB=HC

AB=AC

Do đó: ΔAHB=ΔAHC

b: Xét tứ giác ABMC có 

H là trung điểm của AM

H là trung điểm của BC

Do đó: ABMC là hình bình hành

Suy ra: AB//MC

24 tháng 12 2020

a, Xét △ABI và △ACI có : AB = AC (gt) BI = CI (do I là trung điểm BC) AI chung => △ABI = △ACI (c-c-c) b, Xét △AIC và △DIB có : AI = DI (gt) \widehat{AIC}=\widehat{DIB} AIC = DIB (đối đỉnh) IC = IB => △AIC = △DIB (c-g-c) => \widehat{DBI}=\widehat{ICA} DBI = ICA (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AC // BD c, Xét △IKB và △IHC có : \widehat{IKB}=\widehat{IHC}=90^O IKB = IHC =90 O IB = IC \widehat{KIB}=\widehat{CIH} KIB = CIH (đối đỉnh) => △IKB = △IHC (ch-gn) => IK = IH

16 tháng 3 2022

Xét \(\Delta ABC\) cân tại A:

AI là đường cao (AI vuông góc BC, I thuộc BC).

\(\Rightarrow\) AI là đường trung tuyến (T/c \(\Delta\) cân).

\(\Rightarrow\) I là trung điểm BC.

Vì \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow AB=AC;\widehat{B}=\widehat{C}\) (T/c \(\Delta\) cân).

Ta có: \(EB=AB-AE;FC=AC-AF.\)

Mà \(\left\{{}\begin{matrix}AE=AF\left(gt\right).\\AB=AC\left(cmt\right).\end{matrix}\right.\)

\(\Rightarrow EB=FC.\)

Xét \(\Delta EBI\) và \(\Delta FCI:\)

\(EB=FC\left(cmt\right).\\ \widehat{B}=\widehat{C}\left(cmt\right).\)

\(IB=IC\) (I là trung điểm BC).

\(\Rightarrow\Delta EBI\) \(=\Delta FCI\left(c-g-c\right).\)

\(\Rightarrow IE=IF\) (2 cạnh tương ứng).

\(\Rightarrow\Delta IEF\) cân tại I.

a: Xét ΔBAI vuông tại A và ΔBEI vuông tại E co

BI chung

góc ABI=góc EBI

=>ΔBAI=ΔBEI

=>IA=IE

b: Xét ΔIAF vuông tại A và ΔIEC vuông tại E có

IA=IE

góc AIF=góc EIC

=>ΔIAF=ΔIEC
=>IF=IC và AF=EC

c: BA+AF=BF

BE+EC=BC

mà BA=BE; AF=EC

nên BF=BC

=>ΔBFC cân tại B

mà BI là phân giác

nên BI vuông góc FC

Xét ΔBFC co BA/BF=BE/BC

nên AE//CF

bạn ơi hình như b làm sai rồi ở phần a chỗ xét tam giác tại sao ABI=EBI

a: Xét ΔBAD và ΔBHD có 

BA=BH

\(\widehat{ABD}=\widehat{HBD}\)

BD chung

Do đó: ΔBAD=ΔBHD

Suy ra: \(\widehat{BAD}=\widehat{BHD}=90^0\)

hay DH\(\perp\)BC

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó: ΔADK=ΔHDC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

=>ΔBKC cân tại B

mà BD là phân giác

nên BD là đường trung trực của KC

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEABài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNCBài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng...
Đọc tiếp

Bài 1:Cho tam giác ABC vuông tại A,có AC=3AB.Trên AC lấy D và E cho AD=DE=EC.Tính tổng các góc BCA,góc BAD,góc BEA
Bài 2:Cho tam giác ABC,có góc ABC=70 độ ,góc ACB=30 độ.Trên AB lấy M sao cho goc MCB =40 độ.Trên cạnh AC lấy N sao cho góc NBC=50 độ.Tính góc MNC
Bài 3:Lấy 3 cạnh BC,CA,BA của tam giác ABC làm canh AC làm cạnh .Dựng 3 tam giác đều BCA1,CAB1,BC1 ra phía ngoài .CMR: các đoan thẳng AA1,BB1,CC1 bằng nhau và đồng quy
Bài 4:Cho tam giác ABC,đường cao AH.Trên nửa mp bờ AB không chứa C lấy D sao cho BD=BA,BD vuông góc BA.Trên nửa mp bờ AC không chứa B lấy E sao cho CE=CA,CE vuông góc CA.CMR:các đường thẳng AH,BE,CD đồng quy
Bài 5:Cho tam giác ABC vuông tại A.cạnh huyền BC=2AB,D trên AC ,E trên AB sao cho góc ABD = 1/3 góc ABC, góc ACE=1/3 góc ACD.Gọi F là giao điểm của BD và CE .Gọi I và K là hình chiếu của F trên BC và AC.Lấy H và G sao cho AC là trung trực của FH,BC là trung trực FG.CM:a,H,B,G thẳng hàng
b,tam giác DEF cân
Bài 6:Cho tam giác ABC nhọn, xác định D trên BC,E trên AC,F trên AB sao cho chu vi tam giác DEF nhỏ nhất

2
2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 
Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 
=> ^DCM = ^AEB và BE = MC (1) 
Δ BMD = Δ BED (c - g - c) 
=> ^BMD = ^BED và BM = BE (2) 
(1) và (2) cho: 
^DCM = ^BMD và CM = MB 
=> Δ BMC cân tại M 
mà ^DMC + ^DCM = 90o (Δ MDC vuông) 
=> ^DMC + ^BMD = 90o 
=> Δ BMC vuông cân. 
=> BCM = 45o 
Mà ^ACB + ^DCM = ^BCM 
=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt)) 
Cách 2: 
Đặt AB = a 
ta có: BD = a√2 
Do DE/DB = DB/DC = 1/√2 
=> Δ DBC đồng dạng Δ DEB (c - g - c) 
=> ^DBC = ^DEB 
Δ BDC có ^ADB góc ngoài 
=> ^ADB = ^DCB + ^DBC 
hay ^ACB + ^AEB = 45o 
Cách 3 
ta có: 
tanAEB = AB/AE = 1/2 
tanACB = AB/AC = 1/3 
tan (AEB + ACB) = (tanAEB + tanACB)/(1 - tanAEB.tanACB) 
= (1/2 + 1/3)/(1 - 1/2.1/3) = 1 = tan45o 
Vậy ^ACB + ^AEB = 45o

2 tháng 9 2017

Kẻ DM ∟ AC sao cho DM = AB. 

Dễ dàng chứng minh Δ DMC = Δ AEB (c - g - c) 

=> ^DCM = ^AEB và BE = MC (1) 

Δ BMD = Δ BED (c - g - c) 

=> ^BMD = ^BED và BM = BE (2) 

(1) và (2) cho: 

^DCM = ^BMD và CM = MB 

=> Δ BMC cân tại M 

mà ^DMC + ^DCM = 90o (Δ MDC vuông) 

=> ^DMC + ^BMD = 90o 

=> Δ BMC vuông cân. 

=> BCM = 45o 

Mà ^ACB + ^DCM = ^BCM 

=> ^ACB + ^AEB = 45o (vì ^AEB = ^DCM (cmt))