K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2015

tick cho mình đi rồi mình giải câu c

25 tháng 10 2021

Ủa rồi cậu đã giải câu c) chưa?? 😃. Đã 4 năm rồi còn chưa thực hiện lời hứa =)))

2 tháng 7 2021

a) Do AH là đường cao trong tam giác ABC cân tại A

\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC

Suy ra H là trung điểm của BC.

mà AH//BD (vì cùng vuông góc với BC)

\(\Rightarrow\) AH là đường trung bình của tam giác DBC

\(\Rightarrow\) 2AH=BD

b)Áp dụng hệ thức trong tam giác vuông có 

\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Vậy...

15 tháng 8 2021

trinhf bày rõ hơn được không bạn ơii

 

NV
30 tháng 7 2021

Từ H kẻ \(HD\perp AC\Rightarrow HD||BK\) (cùng vuông góc AC)

Mà ABC cân tại A \(\Rightarrow\) H là trung điểm BC \(\Rightarrow HC=\dfrac{BC}{2}\)


\(\Rightarrow\) HD là đường trung bình tam giác BCK

\(\Rightarrow HD=\dfrac{BK}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông ACH với đường cao HD ứng với cạnh huyền:

\(\dfrac{1}{HD^2}=\dfrac{1}{AH^2}+\dfrac{1}{CH^2}\)

\(\Leftrightarrow\dfrac{1}{\left(\dfrac{BK}{2}\right)^2}=\dfrac{1}{AH^2}+\dfrac{1}{\left(\dfrac{BC}{2}\right)^2}\)

\(\Leftrightarrow\dfrac{4}{BK^2}=\dfrac{1}{AH^2}+\dfrac{4}{BC^2}\)

\(\Leftrightarrow\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

NV
30 tháng 7 2021

undefined

Tham khảo:

2 tháng 7 2021

A B C H D K

a)) Xét tam giác ABC cân tại A có AH là đường cao => AH cũng là đường trung tuyến 

=> BH = HC

Xét tam giác BCD có: AH // BD (vì cùng vuông góc với BC) và H là trung điểm của BC

=> AH là đường trung bình ==> \(AH=\frac{1}{2}BD\)=> BD = 2AH

b) Xét tam giác BCD vuông tịa B có BK là đường cao

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\) (hệ thức lượng trong tam giác vuông)

=> \(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{\left(2AH\right)^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\)

17 tháng 11 2022

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

17 tháng 11 2022

Lấy E sao cho A là trung điểm của CE

Xét ΔEBC có

BA là đường trung tuyến

BA=CE/2

Do đó: ΔEBC vuông tại E

Xét ΔCBE có AH//BE

nên AH/BE=CH/CB=1/2

=>AH=1/2BE

Xét ΔBEC vuông tại B có BK là đường cao

nên \(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{BE^2}\)

=>\(\dfrac{1}{BK^2}=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

20 tháng 8 2016

A B C D H K

Từ B kẻ BD vuông góc với BD , cắt CA tại D. 

=> Tam giác BCD vuông tại B có đường trung tuyến AB

=> AB = AC = AD

Ta có : \(\begin{cases}AH\text{//}BD\\AC=AD\end{cases}\) => AH là đường trung bình của tam giác BCD

=> \(AH=\frac{1}{2}BD\Rightarrow AH^2=\frac{BD^2}{4}\Rightarrow BD^2=4AH^2\)

Áp dụng hệ thức về cạnh trong tam giác vuông BDC có : 

\(\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{BD^2}\Leftrightarrow\frac{1}{BK^2}=\frac{1}{BC^2}+\frac{1}{4AH^2}\) 

24 tháng 8 2016

he thuc lg la ra ngay