K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 4 2018

Xin lỗi bạn vì bây giờ mình mới onl để trả lời được .

Lời giải:

Góc với đường tròn

Bài này mấu chốt là việc chỉ ra $D,F,B$ thẳng hàng.

Theo tính chất góc nội tiếp chắn đường kính suy ra \(\widehat{ANB}=90^0\) hay \(AN\perp EB\)

Xét tam giác $EAB$ có \(AN\perp EB, EC\perp AB\) và \(AN\cap EC=F\) nên $F$ là trực tâm của tam giác $EAB$

Do đó: \(BF\perp EA\)

Mà \(BD\perp EA\) do \(\widehat{ADB}=90^0\) (góc nội tiếp chắn đường kính)

\(\Rightarrow BF\parallel BD\Rightarrow B,D,F\) thẳng hàng.

\(\Rightarrow \widehat{FDA}=90^0\)

Xét tứ giác $FDAC$ có \(\widehat{FDA}+\widehat{FCA}=90^0+90^0=180^0\) nên là tứ giác nội tiếp

\(\Rightarrow \widehat{DCF}=\widehat{DAF}=\widehat{DAN}(1)\)

Mặt khác:

Tổng hai góc đối \(\widehat{FCB}+\widehat{FNB}=90^0+90^0=180^0\) nên tứ giác $FNBC$ nội tiếp

\(\Rightarrow \widehat{NCF}=\widehat{NBF}=\widehat{NBD}(2)\)

Từ \((1); (2)\) kết hợp với \(\widehat{DAN}=\widehat{NBD}\) (hai góc nội tiếp chắn cung DN) suy ra \(\widehat{DCF}=\widehat{NCF}\), hay $CF$ là tia phân giác của góc \(\widehat{DCN}\).

Ta có đpcm.

2 tháng 4 2018

@Nguyễn Thanh Hằng , @Aki Tsuki, @Akai Haruma, @Nhã Doanh, @Nguyễn Huy Thắng, @Neet, @Ngô Thanh Sang giúp với!!!!!!!!!!!!lolang

13 tháng 11 2019

xdbscasfv  jzdr6535943465gthzgh

29 tháng 5 2017

I A B O H D E C C'

  1. Vì \(\Delta ADC\)nội tiếp đường tròn đường kính AO \(\Rightarrow\widehat{ADO}=90^O\Rightarrow OD⊥AC\left(1\right)\)mà \(\Delta ABC\)nội tiếp đường tròn (O) \(\Rightarrow\widehat{ACB}=90^O\Rightarrow BC⊥AC\left(2\right)\)từ 1 và 2 có \(OD\downarrow\uparrow BC\)Mà O là trung điểm BC thì D sẽ phải là trung điểm AC => AD = DC
  2. do \(OH⊥BC\Rightarrow\widehat{CHO}=90^0\left(3\right)\)Mà \(\widehat{ODC}=90^0\left(4\right)\)TỪ 3 và 4 có D và H nhìn OC dưới cùng một góc vuông nên DOHC nội tiếp đường tròn đường kính OC
  3. Vì \(OA=OB=OC=\frac{AB}{2}=3,HB=2OH\Rightarrow HB=\frac{2}{3}OB=\frac{2.3}{3}=2\).Theo hệ thức lượng trong tam giác vuông \(\Delta BCA\)có \(BC=\sqrt{HB.AB}=\sqrt{2.6}=\sqrt{12}\)Và HA=AB-HB=6-2=4 => \(AC=\sqrt{AH.AB}=\sqrt{4.6}=2\sqrt{6}\Rightarrow DC=\frac{AC}{2}=\frac{2\sqrt{6}}{2}=\sqrt{6}\)Xét Vuông \(\Delta DCB\)có:\(BD^2=DC^2+BC^2=6+12=18\),\(ID=IO=\frac{OA}{2}=\frac{3}{2}\),\(IB=IO+OB=\frac{3}{2}+3=\frac{9}{4}\)ta có :\(ID^2+BD^2=\frac{9}{4}+18=\frac{81}{4}=IB^2\)Vậy theo hệ thức lượng trong tam giác vuông có \(\Delta IDB\)Vuông tại D \(\Rightarrow ID⊥BD\)Mà ID là bán kính của (I) => BD là tiếp tuyến của (I)
17 tháng 11 2017

Bạn kia làm đúng rồiV^V

29 tháng 5 2021

a) Vì TO là đường kính \(\Rightarrow\angle TMO=90\) mà \(M\in\left(O\right)\Rightarrow TM\) là tiếp tuyến của (O)

b) Xét \(\Delta TMC\) và \(\Delta TDM:\) Ta có: \(\left\{{}\begin{matrix}\angle MTDchung\\\angle TMC=\angle TDM\end{matrix}\right.\)

\(\Rightarrow\Delta TMD\sim\Delta TCM\left(g-g\right)\Rightarrow\dfrac{TC}{TM}=\dfrac{TM}{TD}\Rightarrow TC.TD=TM^2\)

c) Vì đường tròn đường kính TO có tâm I và đường tròn (O) cắt nhau tại M và N \(\Rightarrow\) IO là trung trực của MN \(\Rightarrow MN\bot TO\)

mà \(\Delta TMO\) vuông tại M \(\Rightarrow TM^2=TE.TO\) (hệ thức lượng)

mà \(TC.TD=TM^2\Rightarrow TC.TD=TE.TO\Rightarrow\dfrac{TC}{TE}=\dfrac{TO}{TD}\)

Xét \(\Delta TEC\) và \(\Delta TDO:\) Ta có: \(\left\{{}\begin{matrix}\angle OTDchung\\\dfrac{TC}{TE}=\dfrac{TO}{TD}\end{matrix}\right.\)

\(\Rightarrow\Delta TEC\sim\Delta TDO\left(c-g-c\right)\Rightarrow\angle TEC=\angle TDO\Rightarrow ODCE\) nội tiếp

3 tháng 9 2021

IC vuông góc IK

3 tháng 9 2021

IC vg góc IK