f(x)=8x^n+3+2x^n+2-x^n+1+3x^n
g(x)=-8x^n+3+x^n+1+2x^n
VS giá trị nào cũa và n thì f(x)+g(x)=5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) + g(x) = ( 8xn+3 + 2xn+2 - xn-1 + 3xn ) + ( -8xn+3 - 2xn+2 + xn+1 + 2xn )
= 8xn+3 + 2xn+2 - xn-1 + 3xn - 8xn+3 - 2xn+2 + xn+1 + 2xn
= 5xn
+, Nếu n = o và x # \(\Rightarrow\)xn = x0 = 1
+, Nếu n \(\in\)N và x = 1 \(\Rightarrow\)xn = 1n = 1
+, Nếu n = 2k và x = -1 \(\Rightarrow\)xn = -12k = 1
Sửa đề:
f(x) = 8xn+3 + 2xn+2 - xn+1 + 3xn
g(x) = -8xn+3 - 2xn+2 + xn+1 + 2xn
=> f(x) + g(x) = 5xn
Để f(x) + g(x) = 5 thì 5xn = 5
=> xn = 1
=> x = 1 và n = 1
Bài 7:
Cho x+5=0
=> x=-5
Cho x2-2x=0
=> x2-2x+1-1=0
=>(x-1)2-1=0
=>(x-1)2=1
=>x-1=1 thì x=2
Nếu x-1=-1 thì x=1
TK MK NHA . CHÚC BẠN HỌC GIỎI
ĐÚNG 100% NHA
Phân tích đa thức thành nhân tử:
a,f(x)=\(3x^4+2x^3-8x^2-2x+5\)
b,\(g\left(x\right)=4x^3+5x^2+5x+1\)
\(g\left(x\right)=4x^3+5x^2+5x+1\\ \Leftrightarrow g\left(x\right)=4x^3+x^2+4x^2+x+4x+1\\ \Leftrightarrow g\left(x\right)=\left(4x^3+x^2\right)+\left(4x^2+x\right)+\left(4x+1\right)\\ \Leftrightarrow g\left(x\right)=x^2\left(4x+1\right)+x\left(4x+1\right)+\left(4x+1\right)\\ \Leftrightarrow g\left(x\right)=\left(4x+1\right)\left(x^2+x+1\right)\)
F(x) + G(x) = x^n - 2x^n+1 - 3x^n+2 + 4x^n+3 + 2x^n+1 - 4x^n+3 + 3x^n+2 + 3x^n
= ( x^n + 3x^n) + ( -2x^n+1 + 2x^n+1) + (-3x^n+2 + 3x^n+2) + ( 4x^n+3 - 4x^nn+3)
= 4x^n
b) f(x) + g(x) = 4
=> 4x^n = 4
=> x^n = 1
(+) với n = 0 => x^0 = 1 luôn đúng với mọi x > 0
(+) n > 1 => x^n = 1 khi x = 0