K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2018

Ta có : \(a>b\)

\(\Rightarrow-3a< -3b\) (Nhân cả 2 vế của BĐT với -3)

\(\Rightarrow4-3a< 4-3b\) (cộng cả 2 vế của BĐT với 4)

=> đpcm.

8 tháng 6 2020

Bài làm

Ta có: a > b

=> 3a > 3b

=> 3a + 4 > 3b + 4                (1)

Mà 4 > 3

=> 3b + 4 > 3b + 3                (2)

Từ (1) và (2) => 3a + 4 > 3b + 3 ( đpcm ) 

NV
31 tháng 3 2021

\(a^2+ab+b^2-b=0\)

\(\Delta=b^2-4\left(b^2-b\right)\ge0\Leftrightarrow-3b^2+4b\ge0\Rightarrow0\le b\le\dfrac{4}{3}\)

\(b^2+\left(a-1\right)b+a^2=0\)

\(\Delta=\left(a-1\right)^2-4a^2\ge0\Rightarrow-3a^2-2a+1\ge0\Rightarrow-1\le a\le\dfrac{1}{3}\)

\(\Rightarrow A=3a^5+b^4\le3.\left(\dfrac{1}{3}\right)^5+\left(\dfrac{4}{3}\right)^4=\dfrac{257}{81}< 4\)

23 tháng 9 2015

a) A = 4^200 - 4

b) 3A = 4^200 . 3 - 12 > 4^200

c) nghĩ đã   

bạn cần trình bày ra o

31 tháng 8 2019

bạn giải rõ giúp mk ak

30 tháng 9 2018

1.

a) ( a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)

= [(a+1)(a-1)][(a-2)(a+2)](a^2+1)(a^2+4)

=[(a^2+1)(a^2-1)][(a^2+4)(a^2-4)]

=(a^4-1)(a^4-16)

b)(3a+1)^2 + (2-3a)(2+3a)

= 9a2 + 6a +1 + 4 - 9a2

= 6a+5

2.

Ta có a3 +b3 = ( a + b)(a2 -ab + b2) = a2 + 2ab +b2 -3ab = (a+b)2 -3ab = 1-3ab ( dpcm)

30 tháng 9 2018

1.

a) (a + 1)(a + 2)(a+ 4)(a - 1)(a+ 1)(a - 2)

= [(a + 1)(a - 1)][(a + 2)(a - 2)](a+ 4)(a+ 1)

= (a2 - 1)(a2 - 4)(a2 + 4)(a2 + 1)

= [(a2 - 1)(a2 + 1)][(a2 - 4)(a2 + 4)]

= (a4 - 1)(a4 - 16)

= a8 - 16a4 - a4 + 16

= a8 - 17a4 + 16

b) (3a + 1)2 + (2 - 3a)(2 + 3a)

= 9a2 + 6a + 1 + 22 - 9a2

= (9a2 - 9a2) + 6a + (1 + 4)

= 6a + 5

2.

a + b = 1

(a + b)3 = 13

a3 + 3a2b + 3ab2 + b3 = 1

a3 + b3 + 3ab(a + b) = 1

a3 + b3 = 1 - 3ab(a + b)

Mà a + b = 1

=> a3 + b3 = 1 - 3ab

Vậy với a + b = 1 thì a3 + b3 = 1 - 3ab

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật