Cho A =405^n + 2^405 + m^2 (m thuộc N). chứng minh A không phải số chính phương.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử √a là số hữu tỉ thì √a viết được thành √a = m/n với m, n ∈ N, (n ≠ 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên m/n không phải là số tự nhiên, do đó n > 1.
Gọi p là một ước nguyên tố của n thì m2 ⋮ p, do đó m ⋮ p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1. Vậy √a là số vô tỉ.
Ta có : 405^n + 2^405 + m^2 = (.......5) + 2^404. 2 + m^2 = (.........5)+ (........6).2 + m^2 = (......5)+(......2)+m^2
= (......7) + m^2
Để A chia hết cho 10 => m^2 phải có c/s tận cùng là 3 mà số chính phương ko có c/s tận cùng là 3
Vậy A ko chia hết cho 10
tick nha bạn !
405^n= co chu so tan cung la 5
240 = 240.2(.......6) .2 co chu so tan ung la 2
=> a ko chi het cho 10
k nhs
Giả sử \(\sqrt{a}\) là số hữu tỉ thì \(\sqrt{a}\) viết được thành \(\sqrt{a}=\frac{m}{n}\) với m, n \(\in\) N, (n \(\ne\) 0) và ƯCLN (m, n) = 1
Do a không phải là số chính phương nên \(\frac{m}{n}\) không phải là số tự nhiên, do đó n > 1.
Ta có m2 = an2. Gọi p là một ước nguyên tố của n thì m2 \(⋮\)p, do đó m\(⋮\) p. Như vậy p là ước nguyên tố của m và n, trái với giả thiết ƯCLN (m, n) = 1.
Vậy\(\sqrt{a}\) là số vô tỉ.