Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau
f(0) # 0;
f(1)=3;
f(x)f(y)=f(x+y)+f(x-y)
Tính giá trị của f(7).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đề ra ta có f(1)f(0)=f(1+0)+f(1-0) \(\Rightarrow\)3f(0)=3+3\(\Rightarrow\)f(0)=2
f(2)f(0)=f(2+0)+f(2-0) \(\Rightarrow\)2f(2)=2+2\(\Rightarrow\)f(2)=2
f(2)f(1)=f(2+1)+f(2-1) \(\Rightarrow\)2.3=f(3)+3\(\Rightarrow\)f(3)=3
f(3)f(2)=f(3+2)+f(3-2) \(\Rightarrow\)2.3=f(5)+3\(\Rightarrow\)f(5)=3
f(5)f(2)=f(5+2)+f(5-2) \(\Rightarrow\)2.3=f(7)+3\(\Rightarrow\)f(7)=3
Lần lượt kiểm tra từng hàm số ta thấy chỉ có hàm số f x = 3 x 2 x - 4 2 thỏa mãn cả hai điều kiện
Đáp án A
Đáp án C
Ta có f ' x = - e x . f 2 x ⇔ f ' x f 2 x = - e x ⇔ ∫ f ' x f 2 x d x = ∫ - e x d x = ∫ d f x f 2 x d x = - e x + C
⇔ - 1 f x = - e x + C ⇔ f x = 1 e x - C mà f 0 = 1 2 ⇒ 1 1 - C = 1 2 ⇒ C = - 1
Vậy f x = 1 e x + 1 ⇒ f ln 2 = 1 e ln 2 + 1 = 1 2 + 1 = 1 3 .
Đáp án D
Ta có f ' x = - e x . f 2 x ⇔ - f ' x f 2 x = e x ⇔ ∫ - f ' x f 2 x d x = ∫ e x d x ⇔ 1 f x = e x + C
Mà f 0 = 1 2 ⇒ 1 f 0 = e 0 + C ⇔ C + 1 = 2 ⇒ C = 1 → f x = 1 e x + 1
Do đó f ' x = - e x e x + 1 2 ⇒ f ' ln 2 = - 2 9 . Vậy phương trình tiếp tuyến là 2 x + 9 y - 2 ln 2 - 3 = 0 .