Chứng minh phân số sau tối giản
\(\dfrac{3n-2}{4n-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: nếu n=3 thì đây ko phải phân số tối giản nha bạn
b: Nếu n=3 thì đây cũng ko phải phân số tối giản nha bạn
a: Nếu n=1 thì đây cũng ko phải phân số tối giản nha bạn
a, Gọi d là UCLN (n+7; n+8) (d ∈ Z)
Ta có n+7 ⋮ d ; n+8 ⋮ d ➞ (n+7) - (n+8) ⋮ d ⇒ -1 ⋮ d
⇒ d ∈ Ư (-1) = (+-1)
⇒ \(\dfrac{\left(n+7\right)}{n+8}\) là phân số tối giản
từ đo bạn tự làm được không?
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
Lời giải:
a/
Gọi ƯCLN(n+1, 2n+3)=d$
Khi đó:
$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$
$2n+3\vdots d(2)$
Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản.
Câu b,c làm tương tự.
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
Gọi \(ƯCLN\left(4n+3;3n+2\right)=d\left(d\in N^{\circledast}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\3n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3\left(4n+3\right)⋮d\\4\left(3n+2\right)⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}12n+9⋮d\\12n+8⋮d\end{matrix}\right.\)
\(\Rightarrow12n+9-12n-8⋮d\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow\dfrac{4n+3}{3n+2}\) là phân số tối giản
Gọi $ƯCLN(4n+3;3n+2)=d(d∈N^*)$
$⇒\begin{cases}4n+3 \vdots d\\3n+2 \vdots d\end{cases}$
$⇒\begin{cases}3.(4n+3)\vdots d\\4.(3n+2) \vdots d\end{cases}$
$⇒\begin{cases}12n+9 \vdots d\\12n+8 \vdots d\end{cases}$
$⇒12n+9 -(12n+8) \vdots d$
tức là $1 \vdots d⇒d=1(d∈N^*)$
Nên $ƯCLN(4n+3;3n+2)=1$
$⇒\dfrac{4n+3}{3n+2}$ là phân số tối giản
Gọi \(d=\left(3n-2,4n-3\right)\)
=> \(\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)
=> \(12n-8-\left(12n-9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
=> phân số \(\dfrac{3n-2}{4n-3}\) là phân số tối giản
Giả sử ( 3n - 2 : 4n - 3 ) = d do n ∈ N* ⇒ d ∈ N
Suy ra: 3n - 2 ⋮ d và 4n - 3 ⋮ d
3n - 2 ⋮ d ⇒ 12n - 8 ⋮ d
Mặt khác: 4n - 3 ⋮ d ⇒ 12n - 9 ⋮ d ⇒ ( 12n - 8 ) - 1 ⋮ d
⇒ 1 ⋮ d hay suy ra d = 1
Vậy các phân số \(\dfrac{3n-1}{4n-3}\) với n ∈ N* là phân số tối giản
Gọi a=UCLN(3n-2;4n-3)
\(\Leftrightarrow\left\{{}\begin{matrix}12n-8⋮a\\12n-9⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Do đó: Phân số 3n-2/4n-3 là phân số tối giản
Gọi \(d=ƯCLN\left(3n-2;4n-3\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n-2⋮d\\4n-3⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n-8⋮d\\12n-9⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(3n-2;4n-3\right)=1\)
\(\Leftrightarrow\dfrac{3n-2}{4n-3}\) tối giản
Đặt 3n - 2 = a , 4n - 3 = b . Gọi ƯCLN (a,b) = D (kí hiệu (a,b) )
Vì phân số tối giản có ƯCLN của tử và mẫu 1 .
Vậy ta cần chứng minh : (a,b) = 1 .Ta tìm UCLN (a,b) bằng thuật tính Euclide. Ta có:
(3n - 2 ; 4n - 3 ) = (4n - 3 ; 2n) = (2n ;1) = 1 (đpcm)