K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Phương trình mà lại không có dấu " = " sao giải bạn ơi !

8 tháng 5 2018

\(\dfrac{2016}{x+y}+\dfrac{x}{y+2015}+\dfrac{y}{4031}+\dfrac{2105}{x+2016}=2\)

27 tháng 6 2019

* Với a, b, c > 0 ta có:

\(A=\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{d+a}+\frac{d}{a+b}\)\(=\left(\frac{a}{b+c}+\frac{c}{d+a}\right)+\left(\frac{b}{c+d}+\frac{d}{a+b}\right)\)

\(=\)\(\frac{a\left(a+d\right)+c\left(b+c\right)}{\left(b+c\right)\left(d+a\right)}+\frac{b\left(a+b\right)+d\left(c+d\right)}{\left(a+b\right)\left(c+d\right)}\)\(\ge\frac{a^2+c^2+ad+bc}{\frac{1}{4}\left(a+b+c+d\right)^2}+\frac{b^2+d^2+ab+cd}{\frac{1}{4}\left(a+b+c+d\right)^2}\)\(=\frac{4\left(a^2+b^2+c^2+d^2+ad+bc+ab+cd\right)}{\left(a+b+c+d\right)^2}\) (Theo bất đẳng thức \(xy\le\frac{1}{4}\left(x+y\right)\))

Mặt khác:

\(2\left(a^2+b^2+c^2+d^2+ab+ad+bc+cd\right)-\left(a+b+c+d\right)^2\)

\(=a^2+b^2+c^2+d^2-2ac-2ad=\left(a-c\right)^2+\left(b-d\right)^2\ge0\)

\(\Rightarrow A\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a=c\\b=d\end{matrix}\right.\)

* Áp dụng: \(\frac{2016}{x+y}+\frac{x}{y+2016}+\frac{y}{4031}+\frac{2015}{x+2016}=2\)

\(\Rightarrow\)\(x=2015\), \(y=2016\)

16 tháng 8 2021

Đặt \(a=\sqrt{x-2015};b=\sqrt{y-2016};c=\sqrt{z-2017}\left(a,b,c>0\right)\)

Khi đó phương trình trở thành: 

\(\dfrac{a-1}{a^2}+\dfrac{b-1}{b^2}+\dfrac{c-1}{c^2}=\dfrac{3}{4}\\ \Leftrightarrow\left(\dfrac{1}{4}-\dfrac{1}{a}+\dfrac{1}{a^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{b}+\dfrac{1}{b^2}\right)+\left(\dfrac{1}{4}-\dfrac{1}{c}+\dfrac{1}{c^2}\right)=0\\ \Leftrightarrow\left(\dfrac{1}{2}-\dfrac{1}{a}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{b}\right)^2+\left(\dfrac{1}{2}-\dfrac{1}{c}\right)^2=0\\ \Leftrightarrow a=b=c=2\\ \Leftrightarrow x=2019;y=2020;z=2021\)

Tick plz

 

10 tháng 6 2017

\(\dfrac{\sqrt{x-2015}-1}{x-2015}+\dfrac{\sqrt{y-2016}-1}{y-2016}=\dfrac{1}{2}\)

Điều kiện \(\left\{{}\begin{matrix}x>2015\\y>2016\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x-2015}}-\dfrac{1}{x-2015}+\dfrac{1}{\sqrt{y-2016}}-\dfrac{1}{y-2016}=\dfrac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=a>0\\\dfrac{1}{\sqrt{y-2016}}=b>0\end{matrix}\right.\) thì ta có:

\(a-a^2+b-b^2=\dfrac{1}{2}\)

\(\Leftrightarrow\left(2a^2-2a+\dfrac{1}{2}\right)+\left(2b^2-2b+\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2}a-\dfrac{1}{\sqrt{2}}\right)^2+\left(\sqrt{2}b-\dfrac{1}{\sqrt{2}}\right)^2=0\)

\(\Leftrightarrow a=b=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x-2015}}=\dfrac{1}{4}\\\dfrac{1}{\sqrt{y-2016}}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2019\\y=2020\end{matrix}\right.\)

11 tháng 6 2017

Bạn ơi, a=b=\(\dfrac{1}{2}\) nhé! Bạn tính nhầm rồi!!

21 tháng 1 2018

a) Tính chất dãy tỉ số bằng nhau: \(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y+x-y}{2014+2016}=\dfrac{2x}{4030}=\dfrac{x}{2015}\)

\(\dfrac{x+y}{2014}=\dfrac{x-y}{2016}=\dfrac{x+y-x+y}{2014-2016}=\dfrac{2y}{-2}=\dfrac{y}{-1}\)

Nên: \(\dfrac{x}{2015}=\dfrac{y}{-1}=\dfrac{xy}{2015}\)

Xét: \(\left\{{}\begin{matrix}\dfrac{x}{2015}=\dfrac{xy}{2015}\Leftrightarrow2015x=2015xy\Leftrightarrow y=1\\\dfrac{y}{-1}=\dfrac{xy}{2015}\Leftrightarrow2015y=-1xy\Leftrightarrow2015=-1x\Leftrightarrow x=-2015\end{matrix}\right.\)

2) \(VT=\left|x-6\right|+\left|x-10\right|+\left|x-2022\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT=\left|x-6\right|+\left|2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge\left|x-6+2022-x\right|+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(VT\ge2016+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\ge2016=VP\)

Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}6\le x\le2022\\x=10\\y=2014\\z=2015\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=2014\\z=2015\end{matrix}\right.\)