Tính
\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)
\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\ 3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\\ 3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\\ 3B-B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\\ 2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{182}{243}\\ B=\dfrac{364}{243}\)
A=14+112+136+...+1972+12916
3A=34+14+112+...+1324+1972
3A−A=(34+14+112+...+1324+1972)−(14+112+136+...+1972+12916)
2A=34−12916
A=10932916
a: \(A=\dfrac{7}{12}+\dfrac{5}{72}-\dfrac{11}{36}=\dfrac{42}{72}+\dfrac{5}{72}-\dfrac{22}{72}=\dfrac{25}{72}\)
b: \(B=\dfrac{8+5}{10}:\dfrac{-5}{13}=\dfrac{13}{10}\cdot\dfrac{13}{-5}=-\dfrac{169}{100}\)
c: \(C=\left(\dfrac{88}{132}-\dfrac{33}{132}+\dfrac{60}{132}\right):\left(\dfrac{55}{132}+\dfrac{132}{132}-\dfrac{84}{132}\right)\)
\(=\dfrac{88-33+60}{55+132-84}=\dfrac{115}{103}\)
a: =-21/36-3/36=-24/36=-2/3
b: =43/12*1/2+5/24=43/24+5/24=2
c: =8/9+1/9=1
e: =1-1/4+1/4-1/7+...+1/97-1/100
=1-1/100=99/100
b: \(=\dfrac{2}{5}+\dfrac{3}{5}:\dfrac{9-10}{15}-\dfrac{7}{2}\)
\(=\dfrac{4-35}{10}+\dfrac{3}{5}\cdot\dfrac{15}{-1}\)
\(=\dfrac{-31}{10}-9=\dfrac{-31}{10}-\dfrac{90}{10}=-\dfrac{121}{10}\)
c: \(=\dfrac{48-5}{12}\cdot\dfrac{1}{3}+\dfrac{7}{36}=\dfrac{43}{36}+\dfrac{7}{36}=\dfrac{50}{36}=\dfrac{25}{18}\)
d: \(=\dfrac{17}{6}:\dfrac{6}{5}+\dfrac{-7}{12}\)
\(=\dfrac{85}{36}-\dfrac{7}{12}=\dfrac{85}{36}-\dfrac{21}{36}=\dfrac{64}{36}=\dfrac{16}{9}\)
a: \(5\sqrt{2}-8\sqrt{3}+30\sqrt{3}-6\sqrt{3}=5\sqrt{2}+16\sqrt{3}\)
b: \(=14\sqrt{3}-\dfrac{3}{32}\cdot8\sqrt{3}+\dfrac{4}{18}\cdot9\sqrt{3}-\dfrac{1}{10}\cdot10\sqrt{3}\)
\(=14\sqrt{3}-\dfrac{3}{4}\sqrt{3}+2\sqrt{3}-1\sqrt{3}=\dfrac{57}{4}\sqrt{3}\)
c: \(=\dfrac{-1}{2}\cdot6\sqrt{3}+\dfrac{1}{15}\cdot5\sqrt{3}-\dfrac{1}{22}\cdot11\sqrt{3}+2\sqrt{3}\)
\(=-3\sqrt{3}+\dfrac{1}{3}\sqrt{3}-\dfrac{1}{2}\sqrt{3}+2\sqrt{3}=-\dfrac{7}{6}\sqrt{3}\)
d: \(=\dfrac{5}{8}\cdot4\sqrt{3}-\dfrac{1}{33}\cdot11\sqrt{3}+\dfrac{3}{14}\cdot7\sqrt{3}-\dfrac{1}{4}\cdot8\sqrt{3}\)
\(=\dfrac{5}{2}\sqrt{3}-\dfrac{1}{3}\sqrt{3}+\dfrac{3}{2}\sqrt{3}-2\sqrt{3}=\dfrac{5}{3}\sqrt{3}\)
\(=\dfrac{85}{18}:\dfrac{85}{9}-\dfrac{136}{45}:\dfrac{136}{15}=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\)
Để tính tổng của biểu thức này, chúng ta cần thực hiện các phép cộng và trừ theo thứ tự từ trái sang phải.
\[4 + \frac{5}{6} - \frac{1}{9} \times \frac{1}{10} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{9} \times \frac{9}{5} + 1 - \frac{1}{3}\]
Đầu tiên, chúng ta sẽ làm các phép tính liên quan đến phân số:
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
Tiếp theo, chúng ta sẽ tổng hợp các phân số:
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{18}{90} + \frac{60}{180} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{2}{10} + \frac{10}{30} - \frac{2}{10} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{36 + 35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{2}{6} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
Tiếp theo, chúng ta sẽ tính tổng các số nguyên:
\[= 4 - 3 + 1\]
Cuối cùng, chúng ta sẽ tổng hợp các phân số:
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{30}{90}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]
\[= 4 + \frac{5}{6}
\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\\)
\(3B=3\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)
\(3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\)
\(3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\)
\(2B=3B-B\)
\(2B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\)
\(2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{729-1}{972}=\dfrac{728}{972}=\dfrac{182}{243}\)
\(B=\dfrac{182}{243}:\dfrac{1}{2}=\dfrac{182\cdot2}{243}=\dfrac{364}{243}\)