giúp mình nha
2^3x+2=4^x+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) 3x² - x(3x - 5) = 9
3x² - 3x² + 5x = 9
5x = 9
x = 9/5
--------------------
B) 5x² + 9x - 2 = 0
5x² + 10x - x - 2 = 0
(5x² + 10x) - (x + 2) = 0
5x(x + 2) - (x + 2) = 0
(x + 2)(5x - 1) = 0
x + 2 = 0 hoặc 5x - 1 = 0
*) x + 2 = 0
x = -2
*) 5x - 1 = 0
5x = 1
x = 1/5
Vậy x = -2; x = 1/5
---------------------
D) 4(5 - 3x) = 5x - 5
20 - 12x = 5x - 5
-12x - 5x = -5 - 20
-17x = -25
x = 25/17
--------------------
E) 2x² - 11x + 14 = 0
2x² - 4x - 7x + 14 = 0
(2x² - 4x) - (7x - 14) = 0
2x(x - 2) - 7(x - 2) = 0
(x - 2)(2x - 7) = 0
x - 2 = 0 hoặc 2x - 7 = 0
*) x - 2 = 0
x = 2
*) 2x - 7 = 0
2x = 7
x = 7/2
Vậy x = 2; x = 7/2
pt vt lại:
\(\dfrac{x+4}{x^2-3x+2}+\dfrac{x+1}{x^2-4}+5=\dfrac{2x+5}{x^2-4x+5}\)
pt này đk?
1: \(\left(x-3\right)\left(2x-5\right)-3x\left(x+4\right)\)
\(=2x^2-5x-6x+15-3x^2-12x\)
\(=-x^2-23x+15\)
2: \(\left(\dfrac{1}{2}x+5\right)\left(2x-\dfrac{1}{5}\right)\)
\(=x^2-\dfrac{1}{10}x+10x-1\)
\(=x^2+\dfrac{99}{10}x-1\)
a: =>4/3x=7/9-4/9=1/3
=>x=1/4
b: =>5/2-x=9/14:(-4/7)=-9/8
=>x=5/2+9/8=29/8
c: =>3x+3/4=8/3
=>3x=23/12
hay x=23/36
d: =>-5/6-x=7/12-4/12=3/12=1/4
=>x=-5/6-1/4=-10/12-3/12=-13/12
1 ) \(lim_{x\rightarrow+\infty}\dfrac{3x^2+5}{x^3-x+2}=lim_{x\rightarrow+\infty}\dfrac{\dfrac{3}{x}+\dfrac{5}{x^3}}{1-\dfrac{1}{x^2}+\dfrac{2}{x^3}}=0\)
2 ) \(lim_{x\rightarrow-\infty}\dfrac{2x^2\left(3x^2-5\right)^3\left(1-x\right)^5}{3x^{14}+x^2-1}\) \(=lim_{x\rightarrow-\infty}\dfrac{\dfrac{2}{x}\left(3-\dfrac{5}{x^2}\right)^3\left(\dfrac{1}{x}-1\right)^5}{3+\dfrac{1}{x^{12}}-\dfrac{1}{x^{14}}}=0\)
3 ) \(lim_{x\rightarrow+\infty}\dfrac{3x-\sqrt{2x^2+5}}{x^2-4}=lim_{x\rightarrow+\infty}\dfrac{\left(7x^2-5\right)}{\left(3x+\sqrt{2x^2+5}\right)\left(x^2-4\right)}\)
\(=lim_{x\rightarrow+\infty}\dfrac{\dfrac{7}{x}-\dfrac{5}{x^3}}{\left(3+\sqrt{2+\dfrac{5}{x^2}}\right)\left(1-\dfrac{4}{x^2}\right)}=0\)
a: P(x)=2x^5-2x^5+4x^4-3x^4+5=x^4+5
Q(x)=-5x^4+2x^4-x^3+3x^2-10x+2
=-3x^4-x^3+3x^2-10x+2
b: P(x)+Q(x)
=x^4+5-3x^4-x^3+3x^2-10x+2
=-2x^4-x^3+3x^2-10x+7
Q(x)-P(x)
=-3x^4-x^3+3x^2-10x+2-x^4-5
=-4x^4-x^3+3x^2-10x-3
P(x)-Q(x)=-(Q(x)-P(x))
=4x^4+x^3-3x^2+10x+3
a. ĐKXĐ: \(x\ne1\)
\(\dfrac{11x-4}{x-1}+\dfrac{10x+4}{2-2x}=\dfrac{2\cdot\left(11x-4\right)}{2\cdot\left(x-1\right)}-\dfrac{10x+4}{2x-2}\)
\(=\dfrac{22x-8}{2\left(x-1\right)}-\dfrac{10x+4}{2\left(x-1\right)}\)\(=\dfrac{22x-8-10x-4}{2\left(x-1\right)}\)
\(=\dfrac{12x-12}{2\left(x-1\right)}\)\(=\dfrac{12\left(x-1\right)}{2\left(x-1\right)}=6\)
b. ĐKXĐ: \(x\ne-2;x\ne\dfrac{1}{2}\)
\(\dfrac{1}{x+2}+\dfrac{5}{2x^2+3x-2}=\dfrac{2x-1}{\left(2x-1\right)\left(x+2\right)}+\dfrac{5}{\left(2x-1\right)\left(x+2\right)}\)
\(=\dfrac{2x-1+5}{\left(2x-1\right)\left(x+2\right)}=\dfrac{2x+4}{\left(2x-1\right)\left(x+2\right)}\)
\(=\dfrac{2\left(x+2\right)}{\left(2x-1\right)\left(x+2\right)}=\dfrac{2}{2x-1}\)
\(\text{#}Toru\)
\(\left(3x-4\right)\left(3x+4\right)+\left(x-5\right)\left(x-3\right)=10x^2+3\)
\(\Leftrightarrow9x^2-16+x^2-8x+15-10x^2-3=0\)
\(\Leftrightarrow-8x=4\)
hay \(x=-\dfrac{1}{2}\)