Tìm x , biết :
b,|2x−1|−x=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|2x+1\right|=\left|x+4\right|\Rightarrow\left[{}\begin{matrix}2x+1=x+4\\2x+1=-x-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\3x=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)
b) \(\left|2x-1\right|=x+4\Rightarrow\left[{}\begin{matrix}2x-1=x+4\\2x-1=-x-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\3x=-3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(B=\dfrac{x^2+x}{x^2+x+1}=\dfrac{3x^2+3x}{3\left(x^2+x+1\right)}=\dfrac{-\left(x^2+x+1\right)+4x^2+4x+1}{3\left(x^2+x+1\right)}\)
\(=-\dfrac{1}{3}+\dfrac{\left(2x+1\right)^2}{3\left(x+\dfrac{1}{2}\right)^2+\dfrac{9}{4}}\ge-\dfrac{1}{3}\)
\(B_{min}=-\dfrac{1}{3}\) khi \(x=-\dfrac{1}{2}\)
Bài 2:
a: Ta có: \(2^{x+1}\cdot3^y=12^x\)
\(\Leftrightarrow2^{x+1}\cdot3^y=2^{2x}\cdot3^x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2x\\x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`a,`
`x^2 + 2x + 1 = 9`
`=> x^2 + 2x + 1 - 9 = 0`
`=> x^2 + 2x - 8 = 0`
`=> x^2 + 4x - 2x - 8 = 0`
`=> (x^2 + 4x) - (2x + 8) = 0`
`=> x(x + 4) - 2(x + 4) = 0`
`=> (x-2)(x+4) = 0`
`=>`\(\left[{}\begin{matrix}x-2=0\\x+4=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)
Vậy, `x \in {2; 4}`
`b,`
`x^2 - 1 = 15`
`=> x^2 = 15 + 1`
`=> x^2 = 16`
`=> x^2 = (+-4)^2`
`=> x = +-4`
Vậy, `x \in {4; -4}`
`c)`
`19 - 2x^2 = 1`
`=> 2x^2 = 19 - 1`
`=> 2x^2 = 18`
`=> x^2 = 18 \div 2`
`=> x^2 = 9`
`=> x^2 = (+-3)^2`
`=> x = +-3`
Vậy, `x \in {3; -3}.`
\(b,\left|2x-1\right|-x=1\\ \Leftrightarrow\left|2x-1\right|=1+x\\ \Rightarrow\left\{{}\begin{matrix}2x-1=1+x\\2x-1=-1-x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(x\in\left\{2;-\dfrac{2}{3}\right\}\)