Cho tam giác ABC, kẻ tia phân giác AD. Qua B kẻ Bx sao cho ^xBC=^CAD. Tia Bx cắt AD ở E. Chứng minh:
a) ΔABE=ΔADC
b) BE2 = ED x AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HÌNH TỰ KẺ NHA
1a) trong tam giác ADB có ADC là góc ngoài tại đỉnh D
=>góc ADC = góc BAD + góc ABD
mà góc BAD = góc DBE
=>góc ADC = góc ABD + góc DBE
=>góc ADB = góc ABE
Xét tam giác ADC va tam giác ABE
Góc BAD = góc CAD(AD là p/g tại đỉnh A)
góc ABE = góc ADC(cmt)
=> tam giác ABE đồng dạng với tam giác ADC(g.g)
1b) Xét tam giac AEB và tam giác BED
góc E chung
góc DBE = góc DAB(gt)
=>tam giác ABE đồng dạng vói tam giác BDE(g.g)
=>BE/DE = AE/BE
=>BE.BE=DE.AE
hayBE^2=DE.AE
Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc E chung
=>ΔEBD đồng dạng vơi ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
Xét ΔEBD và ΔEAB có
góc EBD=góc EAB
góc E chung
=>ΔEBD đồng dạng vơi ΔEAB
=>EB/EA=ED/EB
=>EB^2=EA*ED
a: Xét ΔABE và ΔADC có
góc BAE=góc DAC
góc AEB=góc ACD
=>ΔABE đồng dạng với ΔADC
b: ΔABE đồng dạng với ΔADC
=>AE/AC=AB/AD
=>AE*AD=AB*AC=BE^2
Xét tg ACD và tg BED có
^ADC = ^BDE (góc đối đỉnh)
^CAD = ^CBE (đề bài)
=> ^ACB = ^AEB => C và E cùng nhìn AB dưới 1 góc = nhau và = ^ACB không đổi
=> A;B;E;C cùng nằm trên 1 đường tròn cố định (Do A;B;C cố định)
Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H và đường tròn ngoại tiếp tứ giác ABEC tại F
Do ABC cân tại A => AF cũng là đường trung trực thuộc cạnh BC của tg ABC => Tâm đường tròn ngoại tiếp tứ giác AABEA thuộc AF => AF là đường kính của đường tròn ngoại tiếp tứ giác ABEC.
Nối E với F => ^AEF = 90 (góc nội tiếp chắn nửa đường tròn)
Xét tg vuông AHD và tg vuông AEF có
^EAF chung
=> tg AHD đồng dạng với tg AEF nên \(\frac{AD}{AF}=\frac{AH}{AE}\Rightarrow AD.AE=AH.AF\)
Do A,B,C cố định => AH không đổi
Do đường tròn ngoại tiếp tứ giác ABEC cố định => AF không đổi
=> AD.AE=AH.AF không đổi
Quá đơn giản :)))
Hình tự vẽ nha
a) Xét tam giác BDE và tam giác ADC có:
\(\widehat{ADC}=\widehat{BDE}\) ( đối đỉnh )
\(\widehat{CBx}=\widehat{CAD}\) ( Vì \(\widehat{CBx}=\widehat{BAD};\widehat{BAD}=\widehat{CAD}\) )
\(\Rightarrow\Delta BDE\sim\Delta ADC\)
\(\Rightarrow\widehat{C}=\widehat{BED}\)
Xét tam giác ABE và tam giác ADC có:
\(\widehat{C}=\widehat{BED}\left(cmt\right)\)
\(\widehat{BAD}=\widehat{DAC}\left(gt\right)\)
\(\Rightarrow\Delta ABE\sim\Delta ADC\left(g-g\right)\)
b) tam giác BAE đồng dạng với tam giác DEB ( tự chứng minh )
\(\Rightarrow\dfrac{BE}{DE}=\dfrac{AE}{BE}\)
\(\Rightarrow BE^2=AE.BE\left(đpcm\right)\)
thank nhiều nha