cho hinh vuong abcd o thuoc mien trong hinh vuong ob=2oa.aob=135 độ.c/m oc=oa+ob
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác ABD và tam giác ACE có
góc ADB = góc AEC = 90 độ
AB=AC
góc A: chung
=> tam giác ABD = tam giác ACE (cạnh huyền - góc nhọn)
=> BD=CE và AD=AE
b) Vì AB=AC và AE=AD => AB-AE=AC-AD => BE=CD
Xét tam giác OEB và tam giác ODC có
góc OEB = góc ODC = 90 độ
BE=CD
góc BOE = góc COD (đối đỉnh)
=> tam giác OEB = tam giác ODC => OB=OC
c) Xét tam giác AOB và tam giác AOC có
AB=AC
OB=OC
AO: cạnh chung
=> tam giác AOB = tam giác AOC (c.c.c)
=> góc OAB=góc OAC
=> AO la tia phân giác góc BAC
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\widehat{AOB}=\alpha\)\(\left(0^o< \alpha< 90^o\right)\)
Ta có \(\widehat{AOB}+\widehat{BOC}=\alpha+\widehat{BOC}=\widehat{AOC}=90^o\)
=> \(\widehat{BOC}=90^o-\alpha\)(1)
và \(\widehat{BOC}+\widehat{COD}=90^o\)
=> \(\widehat{BOC}=90^o-\widehat{COD}\)(2)
Từ (1) và (2)
=> \(\widehat{AOB}=\widehat{COD}=\alpha\)