K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
21 tháng 3 2018

Lời giải:

Tứ giác nội tiếp

a) Vì $BD, CE$ là đường cao nên \(BD\perp AC, CE\perp AB\)

\(\Rightarrow \widehat{HDA}=\widehat{HEA}=90^0\)

\(\Rightarrow \widehat{HDA}+\widehat{HEA}=180^0\)

Do đó tứ giác $ADHE$ nội tiếp.

Gọi $I$ là trung điểm của $AH$ thì \(AI=IH=\frac{AH}{2}\)

Xét tam giác $AEH$ vuông tại $E$ có $I$ là trung điểm cạnh huyền $AH$ nên \(EI=\frac{AH}{2}\) (theo định lý về đường trung tuyến đối diện cạnh huyền của tam giác vuông).

Hoàn toàn tương tự \(DI=\frac{AH}{2}\)

Do đó: \(AI=HI=EI=DI\Rightarrow I\) là tâm đường tròn ngoại tiếp tứ giác $ADHE$

b)

Vì ba đường cao của tam giác thì đồng quy tại một điểm nên hiển nhiên $AF$ là đường cao của tam giác $ABC$

\(\Rightarrow \widehat{ADB}=\widehat{AFB}=90^0\)

\(\Rightarrow ADFB\) nội tiếp.

\(\Rightarrow \widehat{DAB}+\widehat{DFB}=180^0\) (hai góc đối nhau)

Mà \(\widehat{DFB}+\widehat{DFC}=180^0\Rightarrow \widehat{DAB}=\widehat{DFC}(1)\)

Lại có: \(\widehat{DAB}=\widehat{BCx}\) (cùng chắn cung BC)

Do đó: \(\widehat{DFC}=\widehat{BCx}\), mà hai góc này ở vị trí so le trong nên \(Cx\parallel DF\)

Ta có đpcm.

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

18 tháng 5 2020

AB  sao là phân giác của BAC được

24 tháng 5 2020

đúng mà

30 tháng 5 2018

A B C D E O F

\(\widehat{\text{AFB}}=\widehat{ADB}=90^0\)

Mà ÀB và ADB là hai góc kề cùng nhìn AB dưới hai góc bằng nhau => ÀDB nội tiếp

b) ta có \(\widehat{ACB}=\widehat{AEB}\)( cùng chắn cung AB)

\(\widehat{DFC}=\widehat{BAF}\)( trong tứ giác nội tiếp góc ngaoif tại một đỉnh bằng góc trong đỉnh còn lại )

\(\Rightarrow\widehat{ACB}+\widehat{FDC}=\widehat{BAF}+\widehat{BAE}=90^0\)

\(\Rightarrow DF\perp CA\)

15 tháng 4 2020

dĐAEDƯÈWEWÈWÉWÈWẺ3GWDFCEWFSCAWECFASEFSAD

17 tháng 5 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Áp dụng định lí Pitago vào tam giác vuông ABC ta có :

B C 2 = A B 2 + A C 2 = 3 2 + 4 2  = 25

Suy ra : BC = 5 (cm)

Theo tính chất hai tiếp tuyến giao nhau ta có:

AD = AE

BD = BF

CE = CF

Mà: AD = AB – BD

AE = AC – CF

Suy ra: AD + AE = AB – BD + (AC – CF)

= AB + AC – (BD + CF)

= AB + AC – (BF + CF)

= AB + AC – BC

Suy ra:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9