giải và biện luận phương trình \(\dfrac{1}{a+b-x}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{x}\){a,b là hằng số , khác 0 , b khác 0 }
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm a\\x+a+5\left(x-a\right)=12\end{matrix}\right.\) \(\Leftrightarrow3x-2a=6\)
biện luận
a=6 ;-6/5 ; pt vô nghiệm ; a khác 6;-6/5
nghiêm \(x=\dfrac{2a+6}{3}\)
a = 0 chẳng vấn đề gì hết
ĐK: \(x\ne b;x\ne c\)
Phương trình tương đương:
\(\dfrac{2}{b-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=\dfrac{1}{c-x}\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
TH1: Nếu \(a=b\Rightarrow\dfrac{1}{a}=\dfrac{1}{b}\Rightarrow\) pt tương đương \(0=0\) \(\Rightarrow\) đúng với mọi x
TH2: nếu \(a\ne b\), chia cả 2 vế cho \(\dfrac{1}{a}-\dfrac{1}{b}\) ta được:
\(\dfrac{2}{b-x}=\dfrac{1}{c-x}\Leftrightarrow2c-2x=b-x\Leftrightarrow x=2c-b\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{a+b-c}{c}=\dfrac{b+c-a}{a}=\dfrac{c+a-b}{b}=\dfrac{a+b-c+b+c-a+c+a-b}{c+a+b}=\dfrac{a+b+c}{a+b+c}=1\)
\(\dfrac{a+b-c}{c}=1\Rightarrow a+b-c=c\Rightarrow a+b=2c\\ \dfrac{b+c-a}{a}=1\Rightarrow b+c-a=a\Rightarrow b+c=2a\\ \dfrac{c+a-b}{b}=1\Rightarrow c+a-b=b\Rightarrow c+a=2b\)
\(\left(1+\dfrac{b}{a}\right)\left(1+\dfrac{a}{c}\right)\left(1+\dfrac{c}{b}\right)\\ =\dfrac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}\\ =\dfrac{2c.2b.2a}{abc}\\ =\dfrac{8abc}{abc}\\ =8\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}-\dfrac{3x}{x^2}}+\dfrac{ax}{x}}{\dfrac{bx}{x}-\dfrac{1}{x}}=\dfrac{a-1}{b}=3\)
=> A
Hằng đẳng thức:
\(\left(x-y-z\right)^2=x^2+y^2+z^2+2\left(yz-xy-zx\right)=x^2+y^2+z^2-2\left(xy+xz-yz\right)\)
\(\Rightarrow x^2+y^2+z^2=\left(x-y-z\right)^2+2\left(xy+xz-yz\right)\)
Giờ thay \(x=\dfrac{1}{a}\) ; \(y=\dfrac{1}{b}\); \(z=\dfrac{1}{c}\) là ra cái người ta làm
\(\dfrac{1}{a+b-x}=\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{x}\\ ĐKXĐ:x\ne0;x\ne-\left(a+b\right)\\ \Rightarrow\dfrac{1}{a+b-x}+\dfrac{1}{x}=\dfrac{1}{a}+\dfrac{1}{b}\\ \Rightarrow\dfrac{x}{x\left(a+b-x\right)}+\dfrac{a+b-x}{x\left(a+b-x\right)}=\dfrac{b}{ab}+\dfrac{a}{ab}\\ \Rightarrow\dfrac{x+a+b-x}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\\ \Rightarrow\dfrac{a+b}{x\left(a+b-x\right)}=\dfrac{b+a}{ab}\)
+) Với \(a\ne-b\Rightarrow x\left(a+b-x\right)=ab\)
\(\Leftrightarrow ax+bx-x^2=ab\\ \Leftrightarrow ax-x^2=ab-bx\\ \Leftrightarrow x\left(a-x\right)=b\left(a-x\right)\\ \Leftrightarrow x\left(a-x\right)-b\left(a-x\right)=0\\ \Leftrightarrow\left(x-b\right)\left(a-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-b=0\\x-a=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=b\\x=a\end{matrix}\right.\)
Khi đó : \(\left\{{}\begin{matrix}a\ne0\\a\ne-\left(a+b\right)\\b\ne0\\b\ne-\left(a+b\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-a-b\\b\ne0\\b\ne-a-b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\2a\ne-b\\b\ne0\\2b\ne-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\a\ne-\dfrac{b}{2}\\b\ne0\\b\ne-\dfrac{a}{2}\end{matrix}\right.\)
+) Với \(a=-b\Rightarrow0=0\left(nghiệm\text{ }đúng\text{ }\forall x\right)\)
\(\Rightarrow S=R\)
Vậy với \(a\ne-b;a\ne0;b\ne0;a\ne-\dfrac{b}{2};b\ne-\dfrac{a}{2}\), pt có 2 nghiệm \(x=b;x=a\)
Với \(a=-b\), pt vô số nghiệm