K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 10:

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền AB

nên \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

hay AH=2,4(cm)

Bài 9: 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{A}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{A}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

b: Ta có: \(\dfrac{AE}{AB}=\dfrac{EF}{BC}\)

nên \(BC=EF:\dfrac{1}{2}=5:\dfrac{1}{2}=10\left(cm\right)\)

4 tháng 2 2021

\(CT:C_xH_yO_z\)

\(x:y:z=\dfrac{54.54}{12}:\dfrac{9.1}{1}:\dfrac{36.36}{16}=4.545:9.1:2.2725=2:4:1\)

\(CTnguyên:\left(C_2H_4O\right)_n\)

\(M_X=88\)

\(\Leftrightarrow44n=88\)

\(\Leftrightarrow n=2\)

\(CTPT:C_4H_8O_2\)

Chúc bạn học tốt !!

4 tháng 2 2021

Cảm ơn bạn nhé!

21 tháng 10 2021

mn ơi  giúp em

21 tháng 10 2021

Bài 3:

\(a,=3x\left(y-4x+6y^2\right)\\ b,=5xy\left(x^2-6x+9\right)=5xy\left(x-3\right)^2\\ d,=\left(x+y\right)\left(x-12\right)\\ f,=2x\left(x-y\right)\left(5x-4y\right)\\ g,=\left(x-2\right)\left(x-2+3x\right)=\left(x-2\right)\left(4x-2\right)=2\left(x-2\right)\left(2x-1\right)\\ h,=x^2\left(1-5x\right)+3xy\left(5x-1\right)=x\left(1-5x\right)\left(x-3y\right)\\ i,=x\left(x-2\right)+4\left(x-2\right)=\left(x+4\right)\left(x-2\right)\\ j,=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\\ k,=4x^2-12x+3x-9=\left(x-3\right)\left(4x+3\right)\\ l,=\left(x+5\right)^2-y^2=\left(x-y+5\right)\left(x+y+5\right)\\ m,=x^2-\left(2y-6\right)^2=\left(x-2y+6\right)\left(x+2y-6\right)\\ n,=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\\ =\left(x^2+5x+5\right)^2-1-24\\ =\left(x^2+5x+5\right)^2-25\\ =\left(x^2+5x\right)\left(x^2+5x+10\right)\\ =x\left(x+5\right)\left(x^2+5x+10\right)\)

Bài 1: 

a: =3x(x+2)

b: \(=x\left(x-1\right)^2\)

c: \(=x^2\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(x-1\right)\left(x+1\right)\)

30 tháng 10 2023

loading...  loading...  loading...  

a: Xét (O) có

MA là tiếp tuyến

MB là tiếp tuyến

Do đó: MA=MB

hay M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

nên O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM⊥AB

5 tháng 11 2021

a) \(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\left\{{}\begin{matrix}sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^0\\sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\Rightarrow\widehat{C}=37^0\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}AB=BD\\AC=DC\end{matrix}\right.\)(t/c 2 tiếp tuyến cắt nhau)

=> BC là đường trung trực AD

\(\Rightarrow AD\perp BC\)

Áp dụng HTL trong tam giác BDC vuông tại D:

\(FB.FC=FD^2\Rightarrow4FB.FC=4FD^2=\left(2FD\right)^2=AD^2\)

Bài 13:

góc A=180-80-30=70 độ

=>góc BAD=góc CAD=70/2=35 độ

góc ADC=80+35=115 độ

góc ADB=180-115=65 độ

Bài 14: 
Xét ΔABC vuông tại A 
-> \(\widehat{B}\)\(+ \widehat{C}=90^o\)

Mà \(\widehat{B}=\widehat{C}\)
=> \(2\widehat{B}=90^o\)
=> \(\widehat{B}=45^o\)