K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

Có P = \(n^4-27n^7+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2-7n+11\right)\cdot\left(n^2+7n+11\right)\)

\(n\in N\) nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow P< 0\) (loại)

Nếu \(n^2-7n+11=0\Rightarrow P=0\) (loại)

Nếu \(n^2-7n+11>1\) (loại vì P là tích của 2 số nguyên dương >1 nên không là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}n-2=0\\n-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=2\\n=5\end{matrix}\right.\)

Vậy \(n\in\left\{2;5\right\}\) thì P là số nguyên tố

21 tháng 3 2018

copy cái bài trên mạng ak :) có đáp án rồi mờ :) đăng lên làm j ? :))

7 tháng 9 2017

1. a)  
 
 
 
Ta có  .

TH1:  .
Và  . Từ đây ta suy ra  .

Khả năng 1.  và  .

Khả năng 2.  . Khi đó  .

+ Với  thì  .
+ Với  thì  .

Khả năng 3.  Khi đó  .

+ Với  thì  .
+ Với  thì  .

TH2:  .
Khi đó ta cũng có  .
Tiếp tục giới hạn ta cũng được  . Xét 3 khả năng:

Khả năng 1: Với  . Và  .

Khả năng 2: Với  . Ta cũng có:  .
+ Với  thì  .
+ Với  thì  .

Khả năng 3: Với  . Cũng có  .
+ Với  thì  .
+ Với  thì  .

TH3:  . Và  .

P/s: Làm một hồi rồi không biết đâu là cái kết quả nữa ???

9 tháng 10 2018

1.Ta có

   n4 + 4 = n4 + 4n2 + 4 – 4n2

             = (n2 + 2 )2 – (2n)2

            = (n2 + 2 – 2n )(n2 + 2 + 2n)

Vì n4 + 4 là số nguyên tố nên  n2 + 2 – 2n = 1 hoặc  n2 + 2 + 2n = 1

   n2 + 2 + 2n > 1 vậy  n2 + 2 – 2n = 1 suy ra n = 1

Thử lại : n = 1 thì 14 + 4 = 5 là số nguyên tố

Vậy với n = 1 thì  n4 + 4  là số nguyên tố./

2.Ta có :

n2003 + n2002 + 1 = n2(n2001 – 1) + n(n2001 – 1) + n2 + n + 1

Với n > 1 ta có :

Do đó  

 Mà n2 + n + 1 > 1 nên  n2003 + n2002 + 1  là hợp số

Với n = 1 ta có

       n2003 + n2002 + 1 = 12003 + 12002 + 1 = 3 là số nguyên tố .

30 tháng 12 2021

\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)

Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)

Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)

\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)

Vậy A là hợp số với \(n>1\)

Vậy \(n=1\)

30 tháng 12 2021

\(3,\)

Đặt \(A=n^4+n^3+1\)

\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)

Vậy \(n=2\)

1 tháng 3 2021

1) n+ 4 = (n+ 4n+ 4) - 4n= (n+ 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1  1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

1 tháng 3 2021

undefined

undefined

27 tháng 10 2019

Có \(B=n^4-27n^2+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)

Vì \(n\in N\)nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)

Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)

Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow n^2-2n-5n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)

Vậy.............

26 tháng 10 2020

\(B=n^4-27n^2+121\)

\(B=n^4+22n^2+121-49n^2\)

\(B=\left(n^2+11\right)^2-49n^2\)

\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)

Vì n là số tự nhiên => \(n^2+11+7n>11\)

Để B là số nguyên tố

=> \(n^2-7n+11=1\)

\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)

26 tháng 3 2024

what

6 tháng 10 2017

ta có (n+3)(n+1) là số nguyên tố \(\Leftrightarrow\orbr{\begin{cases}n+3=1\\n+1=1\end{cases}\Leftrightarrow\orbr{\begin{cases}n=1-3\\n=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}n=-2\\n=0\end{cases}}}\)

                                                                                                                                Mà \(n\in N\)

\(\Rightarrow\)n=0