CMR \(\dfrac{2n+3}{3n+5}\) (n∈Z) là phân số tối giản
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN của tử và mẫu là d.
Ta có : \(2n+3⋮d\) <=> \(3\left(2n+3\right)=6n+9⋮d\)
và \(3n+5⋮d\) <=> \(2\left(3n+5\right)=6n+10⋮d\)
=> \(6n+10-\left(6n+9\right)⋮d\)<=> \(1⋮d\)
Mà d nguyên nên d=1 => P/s tối giản
Giả sử d là ƯCLN(2n+3,3n+5)\(\left(d\inℕ^∗\right)\)
Khi đó: \(\hept{\begin{cases}\left(2n+3\right)⋮d\\\left(3n+5\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}\left(6n+9\right)⋮d\\\left(6n+10\right)⋮d\end{cases}}}\)
\(\Rightarrow\left[\left(6n+10\right)-\left(6n+9\right)\right]⋮d\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)
\(\Rightarrow\frac{2n+3}{3n+5}\)là phân số tối giản (đpcm)
Giải:
Gọi ƯCLN (2n+3;3n+5)=d
Ta có:
2n+3:d =>3. (2n+3):d
3n+5:d=> 2. (3n+5):d
=> [3. (2n+3) - 2.(3n+5)]:d
=>(6n+9 - 6n-10): d
=> -1:d
=> d={1,-1}
Tick mình nha
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Giả sử ( 3n - 2 : 4n - 3 ) = d do n ∈ N* ⇒ d ∈ N
Suy ra: 3n - 2 ⋮ d và 4n - 3 ⋮ d
3n - 2 ⋮ d ⇒ 12n - 8 ⋮ d
Mặt khác: 4n - 3 ⋮ d ⇒ 12n - 9 ⋮ d ⇒ ( 12n - 8 ) - 1 ⋮ d
⇒ 1 ⋮ d hay suy ra d = 1
Vậy các phân số \(\dfrac{3n-1}{4n-3}\) với n ∈ N* là phân số tối giản
Gọi a=UCLN(3n-2;4n-3)
\(\Leftrightarrow\left\{{}\begin{matrix}12n-8⋮a\\12n-9⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Do đó: Phân số 3n-2/4n-3 là phân số tối giản
Gọi ƯCLN(2n + 5,3n + 7) = d (d \(\inℤ;d\ne0\))
=> Ta có :\(\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d\)
=> \(1⋮d\Rightarrow d=1\)
Lời giải:
a/
Gọi ƯCLN(n+1, 2n+3)=d$
Khi đó:
$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$
$2n+3\vdots d(2)$
Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản.
Câu b,c làm tương tự.
Gọi d là ƯCLN (2n + 3; 3n + 5)
=> 2n + 3 chia hết cho d
3n + 5 chia hết cho d
=> 3(2n + 3) hay 6n + 9 chia hết cho d
2(3n + 5) hay 6n + 10 chia hết cho d
=> (6n + 10) - (6n + 9) chia hết cho d
=> 1 chia hết cho d
=> \(\dfrac{2n+3}{3n+5}\) là phân số tối giản (đpcm)