Tìm n biết 6 . 2n + 3 : 2n = 9 . 29
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2n + 29 \(⋮\) 2n + 1
\(\Rightarrow\) 2n + 29 - (2n + 1) \(⋮\) 2n + 1
\(\Rightarrow\) 28 \(⋮\) 2n + 1
\(\Rightarrow\) 2n + 1 \(\in\) Ư(28) = {1 ; 2 ; 4 ; 7 ; 14 ; 28} , mà n \(\in\) N
\(\Rightarrow\) n \(\in\) {0 ; 3}
Vậy n \(\in\) {0 ; 3}
b) 5n + 38 \(⋮\) n + 2
\(\Rightarrow\) 5n + 38 - 5(n + 2) \(⋮\) n + 2
\(\Rightarrow\) 28 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư(28) = {1 ; 2 ; 4 ; 7 ; 14 ; 28}, mà n \(\in\) N
\(\Rightarrow\) n \(\in\) {0 ; 2 ; 5 ; 12 ; 26}
Vậy n \(\in\) {0 ; 2 ; 5 ; 12 ; 26}
a) n + 9 ⋮ n - 1
⇒ n - 1 + 10 ⋮ n - 1
⇒ 10 ⋮ n - 1
⇒ n - 1 ϵ Ư(10) = {1; -1; 2; -2; 5; -5; 10; -10}
⇒ n ϵ {2; 0; 3; -1; 6; -4; 11; -9}
b) n + 5 ⋮ 2n + 3
⇒ 2(n + 5) ⋮ 2n + 3
⇒ 2n + 10 ⋮ 2n + 3
⇒ 2n + 3 + 7 ⋮ 2n + 3
⇒ 7 ⋮ 2n + 3
⇒ 2n + 3 ϵ Ư(7) = {1; -1; 7; -7}
⇒ n ϵ {-1; -2; 2; -5}
c) 2n + 4 ⋮ n + 6
⇒ 2n + 12 - 8 ⋮ n + 6
⇒ 2(n + 6) - 8 ⋮ n + 6
⇒ 8 ⋮ n + 6
⇒ n + 6 ϵ Ư(8) = {1; -1; 2; -2; 4; -4; 8; -8}
⇒ n ϵ {-5; -7; -4; -8; -2; -10; 2; -14}
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
Ta có : n + 6 chia hết cho n + 1
=> n + 1 + 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư(5) = {1;5}
=> n = {0;4}
Ta có :
n + 6 chia hết cho n + 1
=> n + 1 + 5 chia hết cho n + 1
=> 5 chia hết cho n + 1
=> n + 1 thuộc Ư ( 5 ) = { 1;5 }
=> n = { 0 ; 4 }
\(a,n+6⋮n+3\)
\(\Rightarrow n+3+3⋮n+3\)
mà \(n+3⋮n+3\Rightarrow3⋮n+3\)
\(\Rightarrow n+3\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Với n + 3 = 1 => n = -2
n + 3 = -1 => n = -4
n +3 = 3 = > n= 0
n+ 3 = -3 => n= -6
\(\Rightarrow n\in\left\{-2;-4;0;-6\right\}\)
b, \(2n+9⋮n+2\)
\(2.n+2+7⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\)
\(\Rightarrow7⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
........
bn lm như trên
\(c,2n+7⋮n+1\)
\(\Rightarrow2n+1+6⋮n+1\)
mà \(2.\left(n+1\right)⋮n+1\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)=\left\{1;-1;2;-2;6;-6\right\}\)
........ như phần vừa nãy
\(d,n+3⋮n-1\)
\(\Rightarrow n+4-1⋮n-1\)
\(\Rightarrow n-1+4\)
mà \(n-1⋮n-1\Rightarrow4⋮n-1\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
......
Bài 1: Gọi d=ƯCLN(3n+11;3n+2)
=>\(\left\{{}\begin{matrix}3n+11⋮d\\3n+2⋮d\end{matrix}\right.\)
=>\(3n+11-3n-2⋮d\)
=>\(9⋮d\)
=>\(d\in\left\{1;3;9\right\}\)
mà 3n+2 không chia hết cho 3
nên d=1
=>3n+11 và 3n+2 là hai số nguyên tố cùng nhau
Bài 2:
a:Sửa đề: \(n+15⋮n-6\)
=>\(n-6+21⋮n-6\)
=>\(n-6\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)
=>\(n\in\left\{7;5;9;3;13;3;27;-15\right\}\)
mà n>=0
nên \(n\in\left\{7;5;9;3;13;3;27\right\}\)
b: \(2n+15⋮2n+3\)
=>\(2n+3+12⋮2n+3\)
=>\(12⋮2n+3\)
=>\(2n+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
=>\(n\in\left\{-1;-2;-\dfrac{1}{2};-\dfrac{5}{2};0;-3;\dfrac{1}{2};-\dfrac{7}{2};\dfrac{3}{2};-\dfrac{9}{12};\dfrac{9}{2};-\dfrac{15}{2}\right\}\)
mà n là số tự nhiên
nên n=0
c: \(6n+9⋮2n+1\)
=>\(6n+3+6⋮2n+1\)
=>\(2n+1\inƯ\left(6\right)\)
=>\(2n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{0;-1;\dfrac{1}{2};-\dfrac{3}{2};1;-2;\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1\right\}\)
a ) 2n + 3 là bội của n - 2
=> 2n + 3 \(⋮\)n - 2
=> 2n - 4 + 7 \(⋮\)n - 2
=> 2 . ( n - 2 ) + 7 \(⋮\)n - 2 mà 2 . ( n - 2 ) \(⋮\)n - 2 => 7 \(⋮\)n - 2
=> n - 2 \(\in\)Ư ( 7 ) = { - 7 ; - 1 ; 1 ; 7 }
=> n thuộc { - 5 ; 1 ; 3 ; 9 } mà n \(\in\)N => n \(\in\){ 1 ; 3 ; 9 }
Vậy n \(\in\){ 1 ; 3 ; 9 }
2n + 3 là bội của n - 2
2n +3 chia hết cho n-2
2n - 4 + 7 chia hết cho n - 2
n - 2 thuộc Ư(7)
=> n = 3;1; - 5 ; 9
mà n là số tự nhiên => n = 1;3;9
=12^n+3:2^n=4603
3.(4^n+2^n)=4063
4^n+2^n=1536
2.(2^n+n)=1536
n.n+n=763
Sai 100% :))