K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Ta có: N là điểm chính giữa của cung AB(gt)

nên ON\(\perp\)AB tại I

hay MN\(\perp\)AB tại I

Xét (O) có 

\(\widehat{NEM}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{NEM}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FEM}=90^0\)

Xét tứ giác MIFE có 

\(\widehat{MIF}\) và \(\widehat{FEM}\) là hai góc đối

\(\widehat{MIF}+\widehat{FEM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MIFE là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

6 tháng 3 2016

1. Để chứng minh cung DE có số đo không đổi, ta cần chứng minh góc \(\angle BOC\) có số đo không đổi. Thực vậy, theo tính chất hai tiếp tuyến cắt nhau,  OB và OC là phân giác ngoài của tam giác ABC. Ta có

 \(\angle BOC=180^{\circ}-\frac{\angle MBC}{2}-\frac{\angle NCB}{2}=\frac{\angle ABC}{2}+\frac{\angle ACB}{2}=90^{\circ}-\frac{\angle BAC}{2}=90^{\circ}-\frac{a}{2}\) 
Do đó góc \(\angle BOC\) có số đo không đổi. Suy ra cung DE có số đo không đổi. 

2.  Do CD vuông góc với AB nên BC,BD là đường kính của hai đường tròn (O) và (O'). Suy ra
 \(\angle CFB=\angle DEB=90^{\circ}\to\angle CFD=\angle CED=90^{\circ}.\)  Vậy tứ giác CDEF nội tiếp. Do đó \(\angle ECF=\angle EDF\to\angle FAB=\angle ECF=\angle EDF=\angle EDB\)
Vậy AB là phân giác của góc AEF.

3. Đề bài có chút nhầm lẫn, "kẻ \(IH\perp BC\) mới đúng. Do tam giác ABC nhọn và I nằm trong nên các điểm H,K,L nằm trên các cạnh của tam giác. Sử dụng bất đẳng thức \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2,\) ta suy ra \(AL^2+BL^2\ge\frac{1}{2}\left(AL+BL\right)^2=\frac{1}{2}AB^2.\)  Tương tự ta cũng có \(BH^2+CH^2\ge\frac{1}{2}BC^2,KC^2+KA^2\ge\frac{1}{2}AC^2.\)  Mặt khác theo định lý Pitago

\(AL^2+BH^2+CK^2=\left(IA^2-IL^2\right)+\left(IB^2-IH^2\right)+\left(IC^2-IK^2\right)\)
\(=\left(IA^2-IK^2\right)+\left(IB^2-IL^2\right)+\left(IC^2-IH^2\right)\)
\(=BL^2+CH^2+AK^2.\)

Thành thử \(AL^2+BH^2+CK^2=\frac{\left(AL^2+BL^2\right)+\left(BH^2+CH^2\right)+\left(CK^2+AK^2\right)}{2}\ge\frac{AB^2+BC^2+CA^2}{2}.\)
Dấu bằng xảy ra khi \(AL=BL,BH=CH,CK=AK\Leftrightarrow I\)  là giao điểm ba đường trung trực.

 

a: ΔODE cân tại O có OI là trung tuyến

nên OI vuông góc DE

góc OIA=góc OBA=90 độ

=>OIBA nội tiếp

b: Xét (O) có

AC,AB là tiếp tuyến

=>AC=AB

mà OB=OC

nên OA là trung trực của BC

=>BC vuông góc OA tại H

=>AH*AO=AB^2

Xét ΔABE và ΔADB có

góc ABE=góc ADB

góc BAE chung

=>ΔABE đồng dạng với ΔADB

=>AB/AD=AE/AB

=>AB^2=AD*AE=AH*AO