Cho tam giác ABC. Kẻ AH vuông góc với BC tại H. Gọi M là trung điểm BC. Biết \(\widehat{BAH}=\widehat{HAM}=\widehat{MAC}\) . C/minh:
a, Tam giác ABC vuông
b, Tam giác ABM đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
Kẻ MK⊥AC tại K
a: Xét ΔABM có
AH là đườg cao
AH là đừog trung tuyến
Do đo; ΔABM cân tại A
Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
=>MK=MC/2
Xét ΔMKC vuông tại K có \(\sin C=\dfrac{MK}{MC}=\dfrac{1}{2}\)
nên \(\widehat{C}=30^0\)
=>\(\widehat{KMC}=60^0\)
=>\(\widehat{BMK}=120^0\)
\(\widehat{KMA}=\dfrac{120^0}{2}=60^0\)
=>\(\widehat{KAM}=30^0=\widehat{C}\)
=>ΔMAC cân tại M
\(\widehat{BAC}=\widehat{BAM}+\widehat{KAM}=90^0\)
=>ΔABC vuông tại A
b: Xét ΔABM cân tại A có \(\widehat{AMB}=60^0\)
nên ΔABM đều