Trình bày cách giải rõ ràng, ct, đơn vị đầy đủ cho e vs ạ tại cô bắt có đầy đủ😅e cảm ơn mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3.6\left(cm\right)\\CH=6.4\left(cm\right)\end{matrix}\right.\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HF là đường cao ứng với cạnh huyền AB, ta được:
\(AF\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC, ta được:
\(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AF\cdot AB=AE\cdot AC\)
gọi số đó là XX
các số có hai chữ số giống nhau là 11, 22,33,44,55,66,77,88,99
để các số có hai chữ số trừ cho 8 thì chỉ có số 44.
Vì 44 – 8 = 36. 36 là số có đơn vi hơn hàng chục
nhớ cho mik 5* và câu trả lời hay nhất nhaa bạn
e,\(3\frac{2}{7}x-\frac{1}{8}=2\frac{3}{4}\)
\(=>\frac{23}{7}x-\frac{1}{8}=\frac{11}{4}\)
\(=>\frac{23}{7}x=\frac{11}{4}+\frac{1}{8}=\frac{23}{8}\)
\(=>x=\frac{23}{8}:\frac{23}{7}\)
\(=>x=\frac{7}{8}\)
a: Xét ΔMQP có
H,I lần lượt là trung điểm của MQ,MP
=>HI là đường trung bình của ΔMQP
=>HI//QP và HI=QP/2
Xét ΔPMN có
I,K lần lượt là trung điểm của PM,PN
=>IK là đường trung bình của ΔPMN
=>IK//MN và \(IK=\dfrac{MN}{2}\)
b: H,I,K thẳng hàng
mà HI//PQ và IK//MN
nên HI//MN
Ta có: HI//MN
HI//PQ
Do đó: MN//PQ
b) \(5\frac{1}{4}.\frac{3}{8}+10\frac{3}{4}.\frac{3}{8}\)
\(=\left(5\frac{1}{4}+10\frac{3}{4}\right).\frac{3}{8}\)
\(=16.\frac{3}{8}=6\)
c) \(6\frac{1}{5}.\frac{-2}{7}+14\frac{4}{5}.\frac{-2}{7}\)
\(=\left(6\frac{1}{5}+14\frac{4}{5}\right).\frac{-2}{7}\)
\(=21.\frac{-2}{7}=-6\)
3.
\(F=\dfrac{k.\left|q_1.q_2\right|}{r^2}=\dfrac{9.10^9.\left|9.10^{-18}\right|}{0,1^2}=8,1.10^{-6}N\)
1.
\(F=\dfrac{k.\left|q_1.q_2\right|}{r^2}=\dfrac{9.10^9.\left|5.10^8.\left(-1,6.10^{-19}\right).5.10^8.\left(-1,6.10^{-19}\right)\right|}{0,02^2}=1,44.10^{-7}N\)