tìm nghiệm của đa thức sau:
a)P(x)=5x-4
b) Q(x)=x2-7x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích đa thức thành nhân tử thôi bạn :
Ta có :
\(h\left(x\right)=x^2+5x+6\)
\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)
\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)
\(\Rightarrow N_oh\left(x\right)=-2;-3\)
\(g\left(x\right)=2x^2+7x-9\)
\(g\left(x\right)=2x^2+9x-2x-9\)
\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)
\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)
\(\Rightarrow N_og\left(x\right)=1;-4,5\)
A(x)=4x4−6x2−7x3−5x−6
B(x)=−5x2+7x3+5x+4−4x4
a/ - Tính:
M(x)=A(x)+B(x)
M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4
M(x)=x2−2
- Tìm nghiệm:
M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2
b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)
C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)
C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4
C(x)=8x4−14x3−x2−10x−10
cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4
a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)
b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)
a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2
=\(2x^2-2x\)
b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)
=x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2
=\(2x^3+4x^2+8x-4\)
c) Ta có H(x)=0
\(\Rightarrow\)\(2x^2-2x\)=0
\(\Rightarrow\)2x(x-1)=0
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy nghiệm của đa thức H(x) là 0;1
a) \(f\left(x\right)=x^2+7x-8=0\)
\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)
\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)
\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)
\(\Rightarrow x-1=0\) hoặc \(x+8=0\)
Nếu \(x-1=0\Rightarrow x=1\)
Nếu \(x+8=0\Rightarrow x=-8\)
Vậy đa thức f(x) có nghiệm là 1 và -8
b) \(k\left(x\right)=5x^2+9x+4=0\)
\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)
\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)
\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)
\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)
Nếu \(x+1=0\Rightarrow x=-1\)
Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)
Vậy đa thức k(x) có nghiệm là -1 và -4/5
\(P=x\left(5-2x\right)\)
\(x=0,,,,,,x=\frac{-5}{-2}\)
b/ \(\left(x^2-\frac{2.7x}{2}+\frac{49}{4}\right)+10-\frac{49}{4}=\left(x-\frac{7}{2}\right)^2-\frac{9}{4}=\left(x-\frac{7}{2}+\frac{3}{2}\right)\left(x-\frac{7}{2}-\frac{3}{2}\right)\)
\(x=2..........x=5\)
p/s tích phát
a,Ta ó: \(5x-2x^2=0\Leftrightarrow x\left(5-2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\5-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}}\)
Vậy...
b,Ta ó: \(Q\left(x\right)=x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-5\right)\left(x-2\right)\)
\(Q\left(x\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)
Vậy...
a: \(A\left(x\right)=4x^4-7x^3+6x^2-5x-6\)
\(B\left(x\right)=-4x^4+7x^3-5x^2+5x+4\)
\(M\left(x\right)=A\left(x\right)+B\left(x\right)=x^2-2\)
Đặt M(x)=0
=>x2=2
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
b: \(M=x^2-2>=-2\)
Dấu '=' xảy ra khi x=0
c: \(C\left(x\right)=A\left(x\right)-B\left(x\right)=8x^4-14x^3+11x^2-10x-10\)
Bài 1:
a: Đặt M(x)=0
=>(x+8)(x-1)=0
=>x=-8 hoặc x=1
b: Đặt N(x)=0
=>(5x+4)(x+1)=0
=>x=-1 hoặc x=-4/5
A/ Đặt \(f\left(x\right)=x^2+7x-8\)
Khi f (x) = 0
=> \(x^2+7x-8=0\)
=> \(x^2+8x-x-8=0\)
=> \(\left(x^2-x\right)+\left(8x-8\right)=0\)
=> \(x\left(x-1\right)+8\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x+8\right)=0\)
=> \(\orbr{\begin{cases}x-1=0\\x+8=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy f (x) có 2 nghiệm \(\hept{\begin{cases}x=1\\x=-8\end{cases}}\)
B/ Đặt \(g\left(x\right)=5x^2+9x+4\)
Khi g (x) = 0
=> \(5x^2+9x+4=0\)
=>\(5x^2+5x+4x+4=0\)
=> \(\left(5x^2+5x\right)+\left(4x+4\right)=0\)
=> \(5x\left(x+1\right)+4\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(5x+4\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\5x+4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\5x=-4\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=\frac{-4}{5}\end{cases}}\)
Vậy g (x) có 2 nghiệm: \(\hept{\begin{cases}x=1\\x=\frac{-4}{5}\end{cases}}\)
a, \(P\left(x\right)=0\)
\(\Leftrightarrow5x-4=0\)
\(\Leftrightarrow5x=4\)
\(\Leftrightarrow x=\dfrac{4}{5}\)
Vậy ...
b/ \(Q\left(x\right)=0\)
\(\Leftrightarrow x^2-7x=0\)
\(\Leftrightarrow x\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
Vậy ..
ca3m ơn nhìu