K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

a, \(P\left(x\right)=0\)

\(\Leftrightarrow5x-4=0\)

\(\Leftrightarrow5x=4\)

\(\Leftrightarrow x=\dfrac{4}{5}\)

Vậy ...

b/ \(Q\left(x\right)=0\)

\(\Leftrightarrow x^2-7x=0\)

\(\Leftrightarrow x\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-7=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

Vậy ..

19 tháng 3 2018

ca3m ơn nhìu

24 tháng 5 2021

a) A(x) = 6x3-x(x+2)+4(x+3)

            = 6x3-x2+2x+12

B(x) = -x(x+1)-(4-3x)+x2(x-2)

        = -(x2)-x-4+3x+x3-2x2

        = x3-3x2+2x-4

b) C(x) = 6x3-x2+2x+12+x3-3x2+2x-4-7x3+4x2=0

            ⇒ 4x+8=0

            ⇒ 4x = -8

            ⇒ x = -2

Vậy nghiệm của đa thức C(x) là 2

11 tháng 4 2023

Phân tích đa thức thành nhân tử thôi bạn :

Ta có :

\(h\left(x\right)=x^2+5x+6\)

\(h\left(x\right)=x\left(x+2\right)+3\left(x+2\right)\)

\(h\left(x\right)=\left(x+2\right)\left(x+3\right)\)

\(\Rightarrow N_oh\left(x\right)=-2;-3\)

\(g\left(x\right)=2x^2+7x-9\)

\(g\left(x\right)=2x^2+9x-2x-9\)

\(g\left(x\right)=2x\left(x-1\right)+9\left(x-1\right)\)

 

\(g\left(x\right)=\left(x-1\right)\left(2x+9\right)\)

\(\Rightarrow N_og\left(x\right)=1;-4,5\)

11 tháng 4 2023

ko biet

 

26 tháng 4 2021

 

A(x)=4x4−6x2−7x3−5x−6

B(x)=−5x2+7x3+5x+4−4x4

 

a/ - Tính:

 M(x)=A(x)+B(x)

M(x)=4x4+6x2−7x3−5x−6−5x2+7x3+5x+4−4x4

M(x)=x2−2

- Tìm nghiệm: 

M(x)=x2−2=0⇔x2=2⇔x=−√2;x=√2

b/ C(x)+B(x)=A(x)⇒C(x)=A(x)−B(x)

C(x)=4x4−6x2−7x3−5x−6−(−5x2+7x3+5x+4−4x4)

C(x)=4x4−6x2−7x3−5x−6+5x2−7x3−5x−4+4x4

C(x)=8x4−14x3−x2−10x−10

7 tháng 3 2022

cho đa thức : A(x)=4x^4+6x^2-7x^3-5x-6 và B(x)=-5x^2+x^3+5x+4-4x^4

a)Tính M(x)=A(x)+B(x) rồi tính nghiệm của đa thức M(x)

b)tìm đa thức C(x)sao cho C(x)|+B(x)=A(x)

a) P(x)+Q(x)=x3+3x2+3x-2-x3-x2-5x+2

                   =\(2x^2-2x\)

b)P(x)-Q(x)=(x3+3x2+3x-2)-(-x3-x2-5x+2)

                  =x3+3x2+3x-2+x\(^3\)+x\(^2\)+5x-2

                 =\(2x^3+4x^2+8x-4\)

c) Ta có H(x)=0

\(\Rightarrow\)\(2x^2-2x\)=0

\(\Rightarrow\)2x(x-1)=0

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy nghiệm của đa thức H(x) là 0;1

31 tháng 3 2017

a) \(f\left(x\right)=x^2+7x-8=0\)

\(\Leftrightarrow f\left(x\right)=x^2-x+8x-8=0\)

\(\Leftrightarrow f\left(x\right)=\left(x^2-x\right)+\left(8x-8\right)=0\)

\(\Leftrightarrow f\left(x\right)=x\left(x-1\right)+8\left(x-1\right)=0\)

\(\Leftrightarrow f\left(x\right)=\left(x-1\right)\left(x+8\right)=0\)

\(\Rightarrow x-1=0\) hoặc  \(x+8=0\)

Nếu \(x-1=0\Rightarrow x=1\) 

Nếu  \(x+8=0\Rightarrow x=-8\)

Vậy đa thức f(x) có nghiệm là 1 và -8

b) \(k\left(x\right)=5x^2+9x+4=0\)

\(\Leftrightarrow k\left(x\right)=5x^2+5x+4x+4=0\)

\(\Leftrightarrow k\left(x\right)=\left(5x^2+5x\right)+\left(4x+4\right)=0\)

\(\Leftrightarrow k\left(x\right)=5x\left(x+1\right)+4\left(x+1\right)=0\)

\(\Leftrightarrow k\left(x\right)=\left(x+1\right)\left(5x+4\right)=0\)

\(\Rightarrow x+1=0\) hoặc \(5x+4=0\)

Nếu \(x+1=0\Rightarrow x=-1\)

Nếu \(5x+4=0\Rightarrow x=-\frac{4}{5}\)

Vậy đa thức k(x) có nghiệm là -1 và -4/5

18 tháng 3 2018

\(P=x\left(5-2x\right)\)

\(x=0,,,,,,x=\frac{-5}{-2}\)

b/  \(\left(x^2-\frac{2.7x}{2}+\frac{49}{4}\right)+10-\frac{49}{4}=\left(x-\frac{7}{2}\right)^2-\frac{9}{4}=\left(x-\frac{7}{2}+\frac{3}{2}\right)\left(x-\frac{7}{2}-\frac{3}{2}\right)\)

  \(x=2..........x=5\)

p/s tích phát

18 tháng 3 2018

a,Ta ó: \(5x-2x^2=0\Leftrightarrow x\left(5-2x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\5-2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}}\)

Vậy...

b,Ta ó: \(Q\left(x\right)=x^2-7x+10=x^2-2x-5x+10=x\left(x-2\right)-5\left(x-2\right)=\left(x-5\right)\left(x-2\right)\)

\(Q\left(x\right)=0\Leftrightarrow\left(x-1\right)\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-5\end{cases}}}\)

Vậy...

a: \(A\left(x\right)=4x^4-7x^3+6x^2-5x-6\)

\(B\left(x\right)=-4x^4+7x^3-5x^2+5x+4\)

\(M\left(x\right)=A\left(x\right)+B\left(x\right)=x^2-2\)

Đặt M(x)=0

=>x2=2

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

b: \(M=x^2-2>=-2\)

Dấu '=' xảy ra khi x=0

c: \(C\left(x\right)=A\left(x\right)-B\left(x\right)=8x^4-14x^3+11x^2-10x-10\)

Bài 1: 

a: Đặt M(x)=0

=>(x+8)(x-1)=0

=>x=-8 hoặc x=1

b: Đặt N(x)=0

=>(5x+4)(x+1)=0

=>x=-1 hoặc x=-4/5

3 tháng 5 2018

A/ Đặt \(f\left(x\right)=x^2+7x-8\)

Khi f (x) = 0

=> \(x^2+7x-8=0\)

=> \(x^2+8x-x-8=0\)

=> \(\left(x^2-x\right)+\left(8x-8\right)=0\)

=> \(x\left(x-1\right)+8\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x+8\right)=0\)

=> \(\orbr{\begin{cases}x-1=0\\x+8=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)

Vậy f (x) có 2 nghiệm \(\hept{\begin{cases}x=1\\x=-8\end{cases}}\)

B/ Đặt \(g\left(x\right)=5x^2+9x+4\)

Khi g (x) = 0

=> \(5x^2+9x+4=0\)

=>\(5x^2+5x+4x+4=0\)

=> \(\left(5x^2+5x\right)+\left(4x+4\right)=0\)

=> \(5x\left(x+1\right)+4\left(x+1\right)=0\)

=> \(\left(x+1\right)\left(5x+4\right)=0\)

=> \(\orbr{\begin{cases}x+1=0\\5x+4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\5x=-4\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=\frac{-4}{5}\end{cases}}\)

Vậy g (x) có 2 nghiệm: \(\hept{\begin{cases}x=1\\x=\frac{-4}{5}\end{cases}}\)