CM: số A= 2013+4!+5!+6!+...+2015! không phải số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(2012^{4n}\)tận cùng 6
\(2013^{4n}\)tận cùng1
\(2014^{4n}\)tận cùng 6
\(2015^{4n}\)tận cùng 5
\(\Rightarrow2012^{4n}+2013^{4n}+2014^{4n}+2015^{4n}\)tận cùng 8
Mà ko có số chính phương nào tận cùng 8
\(\Rightarrow2012^{4n}+2013^{4n}+2014^{4n}+2015^{4n}\)không phải số chính phương
Đề có sai ko you? Phải là n \(\in\)N* vì nếu \(n=0\)thì
\(2012^{4.0}+2013^{4.0}+2014^{4.0}+2015^{4.5}=2012^0+2013^0+2014^0+2015^0=1+1+1+1=2^2\)là số chính phương. Vô lý
P/s: Có gì thì gửi tin nhắn cho mk, mk sẽ giải chi tiết hơn nhé
A= 102012+102013+102014+102015+16
A=102012.1111 +16
NX: 102012chia hết cho 4, 1111 chia 4 dư 3 =>102012.1111 chia 4 dư 3 mà 16 chia hết cho 4
=> A chia 4 dư 3 => A ko là scp
p/s tick hộ mk nha
\(A=10^{2012}\left(1+10+100+1000\right)=10^{2012}.1111\)
102012 là số chính phương . 1111 không là số chính phương
=> A không là số chính phương
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
- Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
- Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Ta có: Đặt a = 2013
Khi đó, ta có: A = a(a + 2)(a + 4)(a + 6) + 16
A = [a(a + 6)][(a + 2)(a + 4)] + 16
A = (a2 + 6a)(a2 + 6a + 8) + 16
A = (a2 + 6a) + 8(a2 + 6a) + 16
A = (a2 + 6a + 4)2
=> A là số chính phương
=> bình phương của 20132 + 6.2013 + 4 = 4064251
(biến đổi trực tiếp luôn cũng được, không cần phải đặt)
mk chưa học giai thừa ,xin lỗi nha