K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

\(\dfrac{x-3}{2012}+\dfrac{x-2}{2013}=\dfrac{x-2013}{2}+\dfrac{x-2012}{3}\)(mk nghĩ đề như thế này)

\(\Leftrightarrow\dfrac{x-3}{2012}-1+\dfrac{x-2}{2013}-1=\dfrac{x-2013}{2}-1+\dfrac{x-2012}{3}-1\)

\(\Leftrightarrow\dfrac{x-2015}{2012}+\dfrac{x-2015}{2013}=\dfrac{x-2015}{2}+\dfrac{x-2015}{3}\)

\(\Leftrightarrow\left(x-2015\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow x=2015\)(vì \(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\))

17 tháng 3 2018

\(\dfrac{x-3}{2012}+\dfrac{x-2}{2013}=\dfrac{x-2013}{2}+\dfrac{x-2015}{3}\\ \Leftrightarrow\left(\dfrac{x-3}{2012}-1\right)+\left(\dfrac{x-2}{2013}-1\right)=\left(\dfrac{x-2013}{2}-1\right)+\left(\dfrac{x-2015}{3}-1\right)\\ \Leftrightarrow\dfrac{x-2018}{2012}+\dfrac{x-2018}{2013}-\dfrac{x-2018}{2}-\dfrac{x-2018}{3}=0\\ \Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\right)=0\\ \Leftrightarrow x-2018=0\left(\text{Vì }\dfrac{1}{2012}+\dfrac{1}{2013}-\dfrac{1}{2}-\dfrac{1}{3}\ne0\right)\\ x=2018\)

Vậy phương trình có nghiệm \(x=2018\)

11 tháng 5 2023

\(\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}=5\)

\(\Leftrightarrow\dfrac{x}{2012}+\dfrac{x+1}{2013}+\dfrac{x+2}{2014}+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-5=0\)

\(\Leftrightarrow\dfrac{x}{2012}-1+\dfrac{x+1}{2013}-1+\dfrac{x+2}{2014}-1+\dfrac{x+3}{2015}+\dfrac{x+4}{2016}-1=0\)

\(\Leftrightarrow\dfrac{x-2012}{2012}+\dfrac{x-2012}{2013}+\dfrac{x-2012}{2014}+\dfrac{x-2012}{2015}+\dfrac{x-2012}{2016}=0\)

\(\Leftrightarrow\left(x-12\right).\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}+\dfrac{1}{2016}\right)=0\)

\(\Leftrightarrow x-12=0\)

\(\Leftrightarrow x=12\)

a: \(\Leftrightarrow x+2016=0\)

hay x=-2016

b: \(\Leftrightarrow x-100=0\)

hay x=100

27 tháng 9 2020

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge2011\\y\ge2012\\z\ge2013\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x-2011}\ge0\\b=\sqrt{y-2012}\ge0\\c=\sqrt{z-2013}\ge0\end{matrix}\right.\) ta có :

\(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{a^2}-\frac{1}{a}+\frac{1}{4}+\frac{1}{b^2}-\frac{1}{b}+\frac{1}{4}+\frac{1}{c^2}-\frac{1}{c}+\frac{1}{4}=0\)

\(\Leftrightarrow\left(\frac{1}{a}-\frac{1}{2}\right)^2+\left(\frac{1}{b}-\frac{1}{2}\right)^2+\left(\frac{1}{c}-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow a=b=c=2\Leftrightarrow\left\{{}\begin{matrix}x=2015\\y=2016\\z=2017\end{matrix}\right.\)

11 tháng 8 2017

\(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)

\(\Leftrightarrow\dfrac{x+4}{2012}+1+\dfrac{x+3}{2013}+1=\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}\)

\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}=\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\)

\(\Leftrightarrow\dfrac{x+2016}{2012}+\dfrac{x+2016}{2013}-\left(\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}\right)=0\)

\(\Leftrightarrow x+2016.\left(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\right)\)

\(\dfrac{1}{2012}+\dfrac{1}{2013}+\dfrac{1}{2014}+\dfrac{1}{2015}\ne0\)

\(\Rightarrow x+2016=0\)

\(\Rightarrow x=-2016\)

Vậy \(x=-2016\) tại biểu thức \(\dfrac{x+4}{2012}+\dfrac{x+3}{2013}=\dfrac{x+2}{2014}+\dfrac{x+1}{2015}\)

11 tháng 8 2017

Theo đề ta có: x+4/2012+x+3/2013=x+2/2014+x+1/2015
=>x+4/2012+x+3/2013-x+2/2014+x+1/2015=0
=>( x+4/2012+1)+(x+3/2013+1)-(x+2/2014+1)+(x+1/2015+1)
=>x+2016/2012+x+2016/2013-x+2016/2014-x+2016/2015=0
=>x+2016.(1/2012+1/2013-1/2014-1/2015)=0
Do 1/2012+1/2013-1/2014-1/2015>0
nên x+2016=0
=>x=-2016
Vậy x=-2016

30 tháng 11 2017

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}+\dfrac{x+2024}{2}=0\)

\(\Leftrightarrow(\dfrac{x+1}{2015}+1)+(\dfrac{x+2}{2014}+1)+(\dfrac{x+3}{2013}+1)+(\dfrac{x+4}{2012}+1)+\dfrac{x+2024}{2}-4=0\)\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}+\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}+\dfrac{x+2016}{2}=0\)\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}\right)=0\)

Hiển nhiên: \(\dfrac{1}{2015}+\dfrac{1}{2014}+\dfrac{1}{2013}+\dfrac{1}{2012}+\dfrac{1}{2}>0\)

\(\Leftrightarrow x+2016=0\Leftrightarrow x=-2016\)

20 tháng 9 2017

Giải:

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)

\(\Leftrightarrow2+\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=2+\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)

\(\Leftrightarrow1+\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}=1+\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}\)

\(\Leftrightarrow\left(1+\dfrac{x+1}{2015}\right)+\left(1+\dfrac{x+2}{2014}\right)=\left(1+\dfrac{x+3}{2013}\right)+\left(1+\dfrac{x+4}{2012}\right)\)

\(\Leftrightarrow\dfrac{x+1+2015}{2015}+\dfrac{x+2+2014}{2014}=\dfrac{x+3+2013}{2013}+\dfrac{x+4+2012}{2012}\)

\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)

\(\Leftrightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)

\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)

\(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)

Nên \(x+2016=0\)

\(\Leftrightarrow x=0-2016\)

\(\Leftrightarrow x=-2016\)

Vậy ...

Chúc bạn học tốt!

20 tháng 9 2017

\(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)

\(\Rightarrow\dfrac{x+1}{2015}+1+\dfrac{x+2}{2014}+1=\dfrac{x+3}{2013}+1+\dfrac{x+4}{2012}+1\)

\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}=\dfrac{x+2016}{2013}+\dfrac{x+2016}{2012}\)

\(\Rightarrow\dfrac{x+2016}{2015}+\dfrac{x+2016}{2014}-\dfrac{x+2016}{2013}-\dfrac{x+2016}{2012}=0\)

\(\Rightarrow\left(x+2016\right).\left(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\right)=0\)

do \(\dfrac{1}{2015}+\dfrac{1}{2014}-\dfrac{1}{2013}-\dfrac{1}{2012}\ne0\)

\(\Rightarrow x+2016=0\Rightarrow x=2016\)

váy x=2016

28 tháng 3 2021

`(x-1)/2013+(x-2)/2012+(x-3)/2011=(x-4)/2010+(x-5)/2009 +(x-6)/2008`

`<=> ((x-1)/2013-1)+((x-2)/2012-1)+((x-3)/2011-1)=( (x-4)/2010-1)+((x-5)/2009-1)+((x-6)/2008-1)`

`<=> (x-2014)/2013 +(x-2014)/2012+(x-2014)/2011=(x-2014)/2010+(x-2014)/2009+(x-2014)/2008`

`<=> x-2014=0` (Vì `1/2013+1/2012+1/2011-1/2010-1/2009-1/2008 \ne 0`)

`<=>x=2014`

Vậy `S={2014}`.

=>x-2014=0

hay x=2014

23 tháng 1 2022

giải rõ ra được không?