K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

23 tháng 3 2017

Ta có : \(\dfrac{1}{2^2}=\dfrac{1}{2\times2}< \dfrac{1}{1\times2}\\ \dfrac{1}{3^2}=\dfrac{1}{3\times3}< \dfrac{1}{2\times3}\\ \dfrac{1}{4^2}=\dfrac{1}{4\times4}< \dfrac{1}{3\times4}\\ ...\\ \dfrac{1}{100^2}=\dfrac{1}{100\times100}< \dfrac{1}{99\times100}\)

\(\Rightarrow\)\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{99\times100}\)

hay \(A< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{1}{1}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{100}{100}-\dfrac{1}{100}\)

\(\Rightarrow A< \dfrac{99}{100}\)

\(\dfrac{99}{100}< 1\)

\(\Rightarrow A< 1\)

Vậy \(A< 1\)(đpcm)

23 tháng 3 2017

Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

...............

\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}< 1\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}< 1\)

Vậy A<1

14 tháng 11 2023

2:

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\cdot...\cdot\left(\dfrac{1}{100^2}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{100}+1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{100}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-99}{100}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{101}{100}\)

\(=-\dfrac{1}{100}\cdot\dfrac{101}{2}=\dfrac{-101}{200}< -\dfrac{100}{200}=-\dfrac{1}{2}\)

 

10 tháng 5 2023

Hôm nay olm sẽ hướng dẫn các em mẹo giải các bài toán dạng này như sau:

Ta thấy vế phải  là \(\dfrac{1}{2}\) thì vế trái sẽ ≤ \(\dfrac{1}{2}\) - a ( a > 0)

Em biến đổi mẫu số các phân số lần lượt thành lũy thừa của các số tự nhiên liên tiếp. Sau đó rút gọn tổng các phân số đó thì sẽ chứng minh được em nhé.

A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\)

A = \(\dfrac{1}{\left(1.2\right)^2}\)+\(\dfrac{1}{\left(2.2\right)^2}\)+\(\dfrac{1}{\left(2.3\right)^2}\)+...+\(\dfrac{1}{\left(2.50\right)^2}\)

A = \(\dfrac{1}{1^2.2^2}\)+\(\dfrac{1}{2^2.2^2}\)+\(\dfrac{1}{2^2.3^2}\)+...+\(\dfrac{1}{2^2.50^2}\)

A = \(\dfrac{1}{2^2}\)\(\times\)(\(\dfrac{1}{1^2}\)+\(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{50^2}\))

A = \(\dfrac{1}{4}\) \(\times\)(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+...+\(\dfrac{1}{50.50}\))

Vì \(\dfrac{1}{1}\)\(\dfrac{1}{2}\)>\(\dfrac{1}{3}\)>\(\dfrac{1}{4}\)>...>\(\dfrac{1}{50}\) 

⇒ \(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{50.50}\)<\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...\(\dfrac{1}{49.50}\)

A = \(\dfrac{1}{4}\).(1+\(\dfrac{1}{2.2}\)+\(\dfrac{1}{3.3}\)+\(\dfrac{1}{4.4}\)+..+\(\dfrac{1}{50.50}\)) < \(\dfrac{1}{4}\) .(1+\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+..+\(\dfrac{1}{49.50}\))

A < \(\dfrac{1}{4}\).(1+\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{49}\)-\(\dfrac{1}{50}\))

A<\(\dfrac{1}{4}\).(2 - \(\dfrac{1}{50}\))

A < \(\dfrac{1}{2}\) - \(\dfrac{1}{200}\) < \(\dfrac{1}{2}\)

Vậy A = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\)+\(\dfrac{1}{6^2}\)+...+\(\dfrac{1}{100^2}\) < \(\dfrac{1}{2}\) ( đpcm)