Cho Δ ABC ( góc A=90 độ). Biết AB= 6cm, AC=8cm. Tính BC
Kẻ AH ⊥ BC (H∈BC), biết AH=4,8cm. Tính diện tích Δ AHC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền BA, ta được:
\(AE\cdot AB=AH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền CA, ta được:
\(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
hay \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAEF vuông tại A và ΔACB vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Do đó: ΔAEF\(\sim\)ΔACB
c) Xét ΔKAN vuông tại K và ΔQAN vuông tại Q có
AN chung
\(\widehat{KAN}=\widehat{QAN}\)
Do đó: ΔKAN=ΔQAN(cạnh huyền-góc nhọn)
Suy ra: AK=AQ(hai cạnh tương ứng)
a) Xét ΔAHB và ΔAHC có
AB=AC(ΔBAC cân tại A)
AH chung
BH=CH(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH\(\perp\)BC tại H
b) Xét ΔADM và ΔBHM có
\(\widehat{DAM}=\widehat{HBM}\)(hai góc so le trong, AD//BH)
MA=MB(M là trung điểm của AB)
\(\widehat{AMD}=\widehat{BMH}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔBHM(g-c-g)
Suy ra: AD=BH(hai cạnh tương ứng)
mà AD=12cm(gt)
nên BH=12cm
Áp dụng định lí Pytago vào ΔAHB vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=20^2-12^2=256\)
hay AH=16(cm)
a) Xét \(\Delta ABC\) vuông tại A
=> BC2 = AB2 + AC2 ( định lý Py - ta - go )
=> BC2 = 62 + 82
=> BC2 = 36 + 64
=> BC2 = 100
=> \(\left\{{}\begin{matrix}BC=10\\BC=-10\end{matrix}\right.\). Vì BC > 0 => BC = 10 cm
Vậy BC = 10 cm
b) Xét \(\Delta AHC\) vuông tại H
=> AC2 = AH2 + HC2 ( định lý Py - ta - go )
=> 82 = 4,82 + HC2
=> 64 = 23,04 + HC2
=> HC2 = 64 - 23,04
=> HC2 = 40,96
=> \(\left\{{}\begin{matrix}HC=6,4\\HC=-6,4\end{matrix}\right.\) . Vì HC > 0 => HC = 6,4 cm
Diện tích \(\Delta AHC\) là : \(\dfrac{1}{2}\) . 4,8 . 6,4 = 15,36 ( cm2 )
Vậy diện tích \(\Delta AHC\) là 15,36 cm2