K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

20 tháng 6 2018

Đáp án B

Do các cạnh bên bằng nhau nên hình chiếu của S lên (ABCD) phải trùng với tâm H của hình vuông ABCD.

Dễ thấy I là trung điểm của SC, vì BD SC, nên BD//(P). Do đó EF // BD. Để ý rng EF đi qua trọng tâm J của tam giác SDB.

22 tháng 12 2019

Chọn A.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Dựng AP ⊥ SD (P ∈ SD).

- Trong mp(SCD) dựng PN ⊥ SD (N ∈ SC)

- Khi đó mặt phẳng (P) ≡ (APN).

- Trong mặt phẳng (ABCD) dựng AK ⊥ AD (K ∈ BC).

- Mà: AK ⊥ SA ⇒ AK ⊥ SD ⇒ K ∈ (APN).

- Trong (SBC) , gọi M = NK ∩ SB. Khi đó tứ giác AMNP là thiết diện của mặt phẳng (P) với hình chóp S.ABCD suy ra tứ giác AMNP nội tiếp đường tròn.

Cách khác:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Dựng AP ⊥ SD (P ∈ SD).

- Trong (SCD) dựng PN ⊥ SD (N ∈ SC).

- Khi đó mặt phẳng (P) ≡ (APN).

- Trong (ABCD), gọi O = AC ∩ BD.

- Trong (SAC), gọi I = AC ∩ SO.

- Trong (SBD), gọi M = PI ∩ SB.

- Khi đó mặt phẳng (P) ≡ (AMNP).

- Ta có: IA.IN = IP.IM ⇒ AMNP nội tiếp đường tròn.

30 tháng 8 2019

Đáp án D

Dễ thấy rằng:

Giả sử  S E ∩ A B = E ' ; S F ∩ C D = F '

Áp dụng định lý Ceva vào tam giác SAB có:

⇔ E ' A = E ' B ⇒ E '  là trung điểm của AB.

Chứng minh tương tự ta cũng có F ' là trung điểm của CD

⇒ E ' F ' là đường trung bình của hình thang ABCD

Áp dụng định lý Menelaus vào tam giác SBE’ với cát tuyến AEM có:

Chứng minh tương tự ta cũng có:

Áp dụng định lý Thales vào tam giác SE’F’ có:

22 tháng 11 2019

30 tháng 3 2018

Đáp án C

 

Gọi  O = A C ∩ B D , G = A O ∩ A C '

Ta có A C ⊥ ( S B D )  mặt khác S C ⊥ B ' D ' ⇒ B ' D ' ⊥ ( S A C ) ⇒ B ' D ' / / B D  

Theo Định lý Talet ta có S B ' B ' B = S D ' D ' D = S G G O = 2 ⇒ G  là trọng tâm ∆ S A C ⇒ C '  là trung điểm SC

Vậy  V S A B ' C ' D ' V S A B C D = V S A B ' C ' + V S A C ' D ' V S A B C D = 1 2 ( V S A B ' C ' V S A B C + V S A C ' D ' V S A C D ) = 1 2 S B ' . S C ' S B . S C + S C ' . S D ' S C . S D

4 tháng 4 2018

18 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có: I ∈ (SAD) ⇒ I ∈ (SAD) ∩ (IBC)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Và PQ //AD // BC (1)

Tương tự: J ∈ (SBC) ⇒ J ∈ (SBC) ∩ (JAD)

Vậy

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (1) và (2) suy ra PQ // MN.

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Do đó: EF = (AMND) ∩ (PBCQ)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tính

EF: CP ∩ EF = K ⇒ EF = EK + KF

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Từ (∗) suy ra

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Tương tự ta tính được KF = 2a/5

Vậy: Giải sách bài tập Toán 11 | Giải sbt Toán 11