K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

a) DE//BC ( D \(\in\) AB , E \(\in\) AC)

=> ΔADE đồng dạng ΔABC (Tính chất tam giác đồng dạng )

13 tháng 3 2018

b) AD= \(\dfrac{1}{3}DB\left(gt\right)\)

=> AD=\(\dfrac{1}{4}AB\) hay \(\dfrac{AD}{AB}=\dfrac{1}{4}\)

Tam giác ADE đồng dạng với tam giác ABC (cmt) theo hệ số tỉ lệ k = \(\dfrac{1}{4}\)

5 tháng 3 2023

a) Ta có : AD + DB = AB ( vì D nằm trên cạnh AB)

=> AD + 2 = 8

=> AD = 6cm

Do đó : ADAB=68=34����=68=34

AEAC=912=34����=912=34

=> ADAB=AEAC=34����=����=34

b) Xét ΔADEΔ��� và ΔABCΔ��� có :

ˆA�^ chung

ADAB=AEAC����=����

=> ΔADE∽ΔABC(c.g.c)Δ���∽Δ���(�.�.�) 

c) Vì IA�� là đường phân giác của ΔABCΔ��� nên

=> ABAC=IBIC=812=23����=����=812=23 

Mà ADAB=AEAC����=���� (ΔADE∽ΔABC(cmt))(Δ���∽Δ���(���)) ⇒ABAC=ADAE=23⇒����=����=23

=>IBIC=ADAE⇒IB⋅AE=IC⋅AD(đpcm)����=����⇒��⋅��=��⋅��(đ���)

 

 

image 

Xét ΔADE và ΔABC có 

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{3}\right)\)

\(\widehat{DAE}=\widehat{BAC}\)(hai góc đối đỉnh)

Do đó: ΔADE\(\sim\)ΔABC(c-g-c)

Suy ra: \(k=\dfrac{AD}{AB}=\dfrac{1}{3}\)

a: AD/AB=3/4

AE/AC=3/4

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

=>ΔADE đồng dạng vơi ΔABC

5 tháng 2 2022

cảm ơn bạn nhiều

a: AD=AB-BD=6(cm)

=>AD/AB=3/4

AE/AC=9/12=3/4

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc A chung

Do đó:ΔADE\(\sim\)ΔABC

6 tháng 3 2022

cảm ơn a

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=25+49=74\)

=>\(BC=\sqrt{74}\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{5}=\dfrac{DC}{7}\)

mà \(DB+DC=BC=\sqrt{74}\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{5}=\dfrac{DC}{7}=\dfrac{DB+DC}{5+7}=\dfrac{\sqrt{74}}{12}\)

=>\(DB=\dfrac{\sqrt{74}}{12}\cdot5=\dfrac{5\sqrt{74}}{12}\left(cm\right);DC=\dfrac{7\sqrt{74}}{12}\left(cm\right)\)

b: Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{CA}=\dfrac{CD}{CB}=\dfrac{ED}{AB}\)

=>\(\dfrac{CE}{7}=\dfrac{ED}{5}=\dfrac{7\sqrt{74}}{12}:\sqrt{74}=\dfrac{7}{12}\)

=>\(CE=\dfrac{7}{12}\cdot7=\dfrac{49}{12}\left(cm\right);ED=7\cdot\dfrac{5}{12}=\dfrac{35}{12}\left(cm\right)\)

c: Xét ΔABC vuông tại A và ΔEDC vuông tại E có

\(\widehat{ACB}\) chung

Do đó: ΔABC~ΔEDC

=>\(k=\dfrac{BC}{DC}=\sqrt{74}:\dfrac{7\sqrt{74}}{12}=\dfrac{12}{7}\)

a: BC=35cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{35}{7}=5\)

Do đó:BD=15cm; CD=20cm

b: Xét ΔABC có DE//AB

nên DE/AB=CD/BC

=>DE/21=20/35=4/7

=>DE=12cm

Xét ΔABC cso DE//BC

nên CE/CA=ED/AB

=>CE/28=12/21=4/7

=>CE=12cm

7 tháng 3 2022

e tự vẽ hình nha

a) vì tg ABC vg tại A(gt)

\(\Rightarrow AB^2+AC^2=BC^2\left(pytago\right)\\ \Leftrightarrow28^2+21^2=BC^2\\ \Leftrightarrow BC=35\left(cm\right)\)

có AD là pgiac(gt)

\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{21}{28}\\ \Leftrightarrow\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}\)

\(+\dfrac{BD}{21}=\dfrac{35}{49}\Rightarrow BD=15\left(cm\right)\\ +\dfrac{CD}{28}=\dfrac{35}{49}\Rightarrow CD=20\left(cm\right)\)

b) xét tgiac ABC và tgac EDC có:

+ góc C chung

+ góc E = góc A (=90 độ)

+ góc D = góc B ( sltrong, DE//AB vì cùng vg góc AC)

\(\Rightarrow\Delta ABC\sim\Delta EDC\left(ggg\right)\\ \Rightarrow\dfrac{CB}{CD}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)

\(\Leftrightarrow\dfrac{35}{20}=\dfrac{AB}{ED}=\dfrac{AC}{EC}\)

\(+ED=\dfrac{20.21}{35}=12\left(cm\right)\\ +EC=\dfrac{28.20}{35}=16\left(cm\right)\)

c)  ở trên câu b a làm có luôn tam giác với tỉ số r đấy e chép xuống

a: góc ADH=góc AEH=góc DAE=90 độ

=>ADHE là hình chữ nhật

b: ΔAHB vuông tại H có HD là đường cao

nên AD*AB=AH^2

ΔAHC vuông tại H có HE là đường cao

nên AE*AC=AH^2=AD*AB

=>AE/AB=AD/AC

=>ΔAED đồng dạng với ΔABC

c: ΔAED đồng dạng với ΔABC

=>\(\dfrac{S_{AED}}{S_{ABC}}=\left(\dfrac{ED}{BC}\right)^2=\dfrac{4}{25}\)

=>\(S_{AED}=\dfrac{4}{25}\cdot80=\dfrac{320}{25}=12.8\left(cm^2\right)\)