\(\sqrt{1+x}+\sqrt{1-x}\le2-\dfrac{x^2}{4}\)
giai bpt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x>0\)
\(\Leftrightarrow\sqrt{\dfrac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{x\left(x^2+1\right)}}-\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\)
\(\Leftrightarrow\sqrt{\dfrac{x^2+x+1}{x^2+1}}\left(\sqrt{\dfrac{x^2-x+1}{x}}-1\right)+\dfrac{\left(x-1\right)^2}{x}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-1\right)^2}{\sqrt{x^2-x+1}+\sqrt{x}}.\sqrt{\dfrac{x^2+x+1}{x^2+1}}+\dfrac{\left(x-1\right)^2}{x}\ge0\) (luôn đúng \(\forall x>0\))
Vậy nghiệm của BPT đã cho là \(x>0\)
\(-\dfrac{2}{\sqrt{x}+1}< \dfrac{1}{5}\left(x\ge0\right)\)
Ta có : \(\left\{{}\begin{matrix}2>0\\-\left(\sqrt{x}+1\right)< 0\forall x\ge0\end{matrix}\right.\)\(\Rightarrow-\dfrac{2}{\sqrt{x}+1}< 0< \dfrac{1}{5}\)
Vậy , phương trình nghiệm đúng với mọi : \(x\ge0\)
\(A=\sqrt{\dfrac{x^2}{x^2+\dfrac{1}{4}xy+y^2}}+\sqrt{\dfrac{y^2}{y^2+\dfrac{1}{4}yz+z^2}}+\sqrt{\dfrac{z^2}{z^2+\dfrac{1}{4}zx+x^2}}\le2\)
\(\Leftrightarrow\sqrt{\dfrac{1}{1+\dfrac{y}{4x}+\dfrac{y^2}{x^2}}}+\sqrt{\dfrac{1}{1+\dfrac{z}{4y}+\dfrac{z^2}{y^2}}}+\sqrt{\dfrac{1}{1+\dfrac{x}{4z}+\dfrac{x^2}{z^2}}}\le2\)
Đặt \(\left\{{}\begin{matrix}\dfrac{y}{x}=a\\\dfrac{z}{y}=b\\\dfrac{x}{z}=c\end{matrix}\right.\) thì bài toán thành
Chứng minh: \(A=\dfrac{1}{\sqrt{4a^2+a+4}}+\dfrac{1}{\sqrt{4b^2+b+4}}+\dfrac{1}{\sqrt{4c^2+c+4}}\le1\) với \(abc=1\)
Thử giải bài toán mới này xem sao bác.
*C/m bài toán mới của HUngnguyen
Ta có BĐT phụ \(\dfrac{1}{\sqrt{4a^2+a+4}}\le\dfrac{a+1}{2\left(a^2+a+1\right)}\)
\(\Leftrightarrow\left(a+1\right)^2\left(4a^2+a+4\right)\ge4\left(a^2+a+1\right)^2\)
\(\Leftrightarrow a\left(a-1\right)^2\ge0\)
Tương tự cho 2 BĐT còn lại cũng có:
\(\dfrac{1}{\sqrt{4b^2+b+4}}\le\dfrac{b+1}{2\left(b^2+b+1\right)};\dfrac{1}{\sqrt{4c^2+c+4}}\le\dfrac{c+1}{2\left(c^2+c+1\right)}\)
CỘng theo vế 3 BĐT trên ta có;
\(VT\le1=VP\) * Chỗ này tự giải chi tiết ra nhé, giờ bận rồi*
ĐKXĐ: \(x^2\ge2\)
Đặt \(\sqrt{x^2-2}=a\ge0\)
BPT tương đương: \(\dfrac{1}{\sqrt{a^2+3}}+\dfrac{1}{\sqrt{3a^2+11}}\le\dfrac{2}{a+1}\)
Ta có: \(VT^2\le2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+11}\right)< 2\left(\dfrac{1}{a^2+3}+\dfrac{1}{3a^2+1}\right)=\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\)
Mặt khác ta có: \(\left(a-1\right)^4\ge0\Leftrightarrow a^4-4a^3+6a^2-4a+1\ge0\)
\(\Leftrightarrow3a^4+10a^2+3\ge2a^4+4a^3+4a^2+4a+2\)
\(\Leftrightarrow\left(3a^2+1\right)\left(a^2+3\right)\ge2\left(a^2+1\right)\left(a+1\right)^2\)
\(\Rightarrow\dfrac{8\left(a^2+1\right)}{\left(3a^2+1\right)\left(a^2+3\right)}\le\dfrac{4}{\left(a+1\right)^2}\)
\(\Rightarrow VT^2< \dfrac{4}{\left(a+1\right)^2}\Rightarrow VT< \dfrac{2}{a+1}\)
\(\Rightarrow\) BPT đã cho đúng với mọi \(a\ge0\) hay nghiệm của BPT là \(x^2\ge2\)
ĐKXĐ:\(-1\le x\le1\)
Đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=a\\\sqrt{1-x}=b\end{matrix}\right.\left(a;b\ge0\right)\)
Khi đó ta có: \(\left\{{}\begin{matrix}a^2+b^2=2\\x^2=1-ab\end{matrix}\right.\). Thay vào bpt ta có:
\(a+b\le a^2+b^2-\frac{1-ab}{4}\)
Có:\(\left(a+b\right)^2-\frac{7}{4}ab-\frac{1}{4}=\left(a+b\right)^2-\frac{7}{4}\left(\frac{\left(a+b\right)^2-2}{2}\right)-\frac{1}{4}=\left(a+b\right)^2-\frac{7}{8}\left(a+b\right)^2+\frac{7}{4}-\frac{1}{4}=\frac{1}{8}\left(a+b\right)^2+\frac{3}{2}\)bpt <=>\(\frac{1}{8}\left(a+b\right)^2-\left(a+b\right)+\frac{3}{2}\ge0\)
\(\Leftrightarrow\left(a+b\right)^2-8\left(a+b\right)+12\ge0\)
\(\Leftrightarrow\left(a+b-6\right)\left(a+b-2\right)\ge0\left(1\right)\)
Có: \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2< 6\)
=> bpt (1) đúng \(\forall x\in\left[-1;1\right]\)
Vậy tập nghiệm của bất phương trình là [-1;1]