Đề: a,b,c >0 , abc=1, theo cô si
\(CM:\dfrac{1}{a+b+1}+\dfrac{1}{1+b+c}+\dfrac{1}{1+c+a}\le1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left(x^3;y^3;z^3\right)=\left(a;b;c\right)\left(x,y,z>0\right)\)
\(\Rightarrow xyz=1\)
Ta cần chứng minh
\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
Áp dụng AM-GM, ta có: \(x^3+y^3+1=\left(x+y\right)\left(x^2-xy+y^2\right)+xyz\)
\(\ge\left(x+y\right)xy+xyz=xy\left(x+y+z\right)\)
\(\Rightarrow\dfrac{1}{x^3+y^3+1}\le\dfrac{1}{xy\left(x+y+z\right)}\)
Tương tự: \(\dfrac{1}{y^3+z^3+1}\le\dfrac{1}{yz\left(x+y+z\right)}\)
\(\dfrac{1}{z^3+x^3+1}\le\dfrac{1}{zx\left(x+y+z\right)}\)
Cộng vế theo vế, ta được
\(....\le\dfrac{1}{x+y+z}\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=\dfrac{1}{x+y+z}.\dfrac{x+y+z}{xyz}=\dfrac{1}{xyz}=1\)
Vậy ta có đpcm
Đẳng thức xảy ra khi a=b=c=1
\(BDT\Leftrightarrow\dfrac{\dfrac{1}{a}+\dfrac{1}{a^2}}{1+\dfrac{1}{a}+\dfrac{1}{a^2}}+\dfrac{\dfrac{1}{b}+\dfrac{1}{b^2}}{1+\dfrac{1}{b}+\dfrac{1}{b^2}}+\dfrac{\dfrac{1}{c}+\dfrac{1}{c^2}}{1+\dfrac{1}{c}+\dfrac{1}{c^2}}\le2\)
Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\rightarrow\left(n,h,t\right)\) thì ta có :
\(\Leftrightarrow\dfrac{n+n^2}{1+n+n^2}+\dfrac{h+h^2}{1+h+h^2}+\dfrac{t+t^2}{1+t+t^2}\le2\)
\(\Leftrightarrow\dfrac{1}{1+n+n^2}+\dfrac{1}{1+h+h^2}+\dfrac{1}{1+t+t^2}\ge1\)
Đặt \(n=\dfrac{yz}{x^2};h=\dfrac{xz}{y^2};t=\dfrac{xy}{z^2}\)\(\Rightarrow\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\)
Và \(\dfrac{x^4}{x^4+x^2yz+y^2z^2}+\dfrac{y^4}{y^4+xy^2z+x^2z^2}+\dfrac{z^4}{z^4+xyz^2+x^2y^2}\ge1\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\)
Cần cm \(\dfrac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\ge1\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)^2\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)
\(\Leftrightarrow x^4+y^4+z^4+2\left(x^2y^2+y^2z^2+z^2x^2\right)\ge x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2\)
\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\left(1\right)\)
Áp dụng BĐT AM-GM ta có:
\(x^2y^2+y^2z^2=y^2\left(x^2+z^2\right)\ge2xy^2z\)
Tương tự rồi cộng theo vế ta có \(\left(1\right)\) đúng
Khi \(a=b=c=1\)
Sửa đề\(VP\le 2\) sau đó nó chính là 1 dạng của BĐT Vasc k cần thêm j cả :">
Chứng minh rằng nếu a,b,c \(\ge\)0 và abc=1 thì
\(\dfrac{1}{2+a}+\dfrac{1}{2+b}+\dfrac{1}{2+c}\le1\)
\(\Leftrightarrow\dfrac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\le1\)
\(\Leftrightarrow\dfrac{ab+bc+ca+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\le1\)
\(\Leftrightarrow ab+bc+ca+12\le2\left(ab+bc+ca\right)+9\)
\(\Leftrightarrow ab+bc+ca\ge3\)
Hiển nhiên đúng do: \(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}=3\)
Vì abc=1 , ta đặt \(a=\dfrac{x}{y};b=\dfrac{y}{z};c=\dfrac{z}{x}\)
Điều phải chứng minh tương đương với:
\(\dfrac{1}{2+\dfrac{x}{y}}+\dfrac{1}{2+\dfrac{y}{z}}+\dfrac{1}{2+\dfrac{z}{x}}\le1\\ \Leftrightarrow\dfrac{y}{2y+x}+\dfrac{z}{2z+y}+\dfrac{x}{2x+z}\le1\\ \Leftrightarrow\dfrac{2y}{2y+x}+\dfrac{2z}{2z+y}+\dfrac{2x}{2x+z}\le2\\ \Leftrightarrow\dfrac{x}{2y+x}+\dfrac{y}{2z+y}+\dfrac{z}{2x+z}\ge1\left(1\right)\)
Áp dụng bất đẳng thức bunhiacopxki dạng phân thức ta có:
\(\dfrac{x}{2y+x}+\dfrac{y}{2z+x}+\dfrac{z}{2x+z}=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2zx}+\dfrac{z^2}{z^2+2xy}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=1\)
=> bài toán được chứng minh
Dấu bằng xảy ra khi x=y=z=1 <=>a=b=c=1
\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\text{≥}\) \(\left(a+b\right)ab\)
⇒ \(a^3+b^3+abc\text{≥}\left(a+b\right)ab+abc=ab\left(a+b+c\right)\)
Tương tự : \(b^3+c^3+abc\text{ ≥}\left(b+c\right)bc+abc=bc\left(a+b+c\right)\)
\(c^3+a^3+abc\text{ ≥}\left(a+c\right)ac+abc=ac\left(a+b+c\right)\)
⇒ \(VT\text{ }\text{≤}\dfrac{1}{a+b+c}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)=\dfrac{1}{a+b+c}.\dfrac{a+b+c}{abc}=\dfrac{1}{abc}\)
Bài 2:
\(\sqrt{\dfrac{a}{b+c}}+\sqrt{\dfrac{b}{c+a}}+\sqrt{\dfrac{c}{a+b}}>2\)
Trước hết ta chứng minh \(\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\)
Áp dụng BĐT AM-GM ta có:
\(\sqrt{a\left(b+c\right)}\le\dfrac{a+b+c}{2}\)\(\Rightarrow1\ge\dfrac{2\sqrt{a\left(b+c\right)}}{a+b+c}\)
\(\Rightarrow\sqrt{\dfrac{a}{b+c}}\ge\dfrac{2a}{a+b+c}\). Ta lại có:
\(\sqrt{\dfrac{a}{b+c}}=\dfrac{\sqrt{a}}{\sqrt{b+c}}=\dfrac{a}{\sqrt{a\left(b+c\right)}}\ge\dfrac{2a}{a+b+c}\)
Thiết lập các BĐT tương tự:
\(\sqrt{\dfrac{b}{c+a}}\ge\dfrac{2b}{a+b+c};\sqrt{\dfrac{c}{a+b}}\ge\dfrac{2c}{a+b+c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\ge\dfrac{2a}{a+b+c}+\dfrac{2b}{a+b+c}+\dfrac{2c}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}\ge2\)
Dấu "=" không xảy ra nên ta có ĐPCM
Lưu ý: lần sau đăng từng bài 1 thôi nhé !
1) Áp dụng liên tiếp bđt \(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\) với a;b là 2 số dương ta có:
\(\dfrac{1}{2a+b+c}=\dfrac{1}{\left(a+b\right)+\left(a+c\right)}\le\dfrac{\dfrac{1}{a+b}+\dfrac{1}{a+c}}{4}\)\(\le\dfrac{\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}}{16}\)
TT: \(\dfrac{1}{a+2b+c}\le\dfrac{\dfrac{2}{b}+\dfrac{1}{a}+\dfrac{1}{c}}{16}\)
\(\dfrac{1}{a+b+2c}\le\dfrac{\dfrac{2}{c}+\dfrac{1}{a}+\dfrac{1}{b}}{16}\)
Cộng vế với vế ta được:
\(\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}.\left(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{4}{c}\right)=1\left(đpcm\right)\)
Lời giải:
Do $abc=1$ nên tồn tại $x,y,z>0$ sao cho:
\((a,b,c)=\left(\frac{x^2}{yz}, \frac{y^2}{xz}, \frac{z^2}{xy}\right)\)
Khi đó: \(\text{VT}=\frac{1}{\frac{x^2}{yz}+\frac{y^2}{xz}+1}+\frac{1}{\frac{y^2}{xz}+\frac{z^2}{xy}+1}+\frac{1}{\frac{x^2}{yz}+\frac{z^2}{xy}+1}\)
\(\Leftrightarrow \text{VT}=\frac{xyz}{x^3+y^3+xyz}+\frac{xyz}{y^3+z^3+xyz}+\frac{xyz}{z^3+x^3+xyz}\)
Áp dụng BĐT Cô -si: \(\left\{\begin{matrix} x^3+y^3+y^3\geq 3xy^2\\ x^3+x^3+y^3\geq 3x^2y\end{matrix}\right.\)
\(\Rightarrow 3(x^3+y^3)\geq 3xy(x+y)\Leftrightarrow x^3+y^3\geq xy(x+y)\)
\(\Rightarrow x^3+y^3+xyz\geq xy(x+y+z)\)
\(\Rightarrow \frac{xyz}{x^3+y^3+xyz}\leq \frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}\)
Hoàn toàn tương tự với các phân thức còn lại suy ra:
\(\text{VT}\leq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=\frac{x+y+z}{x+y+z}=1\) (đpcm)
Dấu bằng xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)