Cho góc xAy. Trên tia Ax đặt các đoạn thẳng AE=3cm, AC=8cm. Trên tia Ay đặt các đoạn thẳng AD=4cm, AF=6cm.
a)Chứng minh : Tam giác ACD đồng dạng tam giác AFE
b) Gọi I là giao điểm của CD và EF. Chứng minh : Tam giác IEC đồng dạng tam giác IDF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔACD và ΔAFE có
AC/AF=AD/AE
góc A chung
=>ΔACD đồng dạng với ΔAFE
b: Xét ΔIEC và ΔIDF có
góc IEC=góc IDF
góc EIC=góc DIF
=>ΔIEC đồng dạng với ΔIDF
=>\(\dfrac{S_{IEC}}{S_{IDF}}=\left(\dfrac{EC}{DF}\right)^2=\dfrac{25}{4}\)
a: Xét ΔACD và ΔAFE có
AC/AF=AD/AE
góc A chung
Do đo:ΔACD đồng dạng với ΔAFE
b: Xét ΔIEC và ΔIDF có
góc IDF=góc IEC
góc ICE=góc IFD
Do đó: ΔIEC đồng dạng với ΔIDF
a, Xét \(\Delta AEF\) và \(\Delta ADC\) có:
\(\widehat{A}\) chung
\(\dfrac{AE}{AF}=\dfrac{3}{6}=\dfrac{1}{2};\dfrac{AD}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AE}{AF}=\dfrac{AD}{AC}\)
Vậy \(\Delta AEF\sim\Delta ADC\left(c.g.c\right)\)
b, Vì \(\Delta AEF\sim\Delta ADC\) (cmt) \(\Rightarrow\widehat{DFI}=\widehat{ECI}\)
Lại có \(\widehat{DIF}=\widehat{ECI}\left(gt\right)\) \(\Rightarrow\Delta DIF\sim\Delta EIC\left(g.g\right)\)
\(\Rightarrow\dfrac{S_{IDF}}{S_{IEC}}=\left(\dfrac{DF}{EC}\right)^2=\left(\dfrac{2}{5}\right)^2=\dfrac{4}{25}\)
-Chúc bạn học tốt-
a: Xét ΔACD và ΔAFE có
AC/AF=AD/AE
góc A chung
=>ΔACD đồng dạng với ΔAFE
b: Xét ΔIDF và ΔIEC có
góc IFD=góc ICE
góc DIF=góc EIC
=>ΔIDF đồng dạng với ΔIEC