Cho ΔABC nhọn có AH ⊥ BC tại H a) Chứng minh AC > AH, AB > AH b) Chứng minh AH < 1/2.(AB + AC)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Xét tam giác AHC có : AHC = 90 độ
=> AC > AH ( AC là cạnh huyền )
2. Xét tam giác AHB có : AHB = 90 độ
=> AB > AH ( AB là cạnh huyền )
Vì BE = AB (gt) => △ABE cân tại B => AB = BE và BAE = BEA
Vì EK ⊥ AC (gt) mà AB ⊥ AC
=> EK // AB (từ vuông góc đến song song)
=> KEA = BAE
Mà BAE = BEA (cmt)
=> KEA = BEA
Xét △HAE vuông tại H và △KAE vuông tại K
Có: AE là cạnh chung
HEA = KEA (cmt)
=> △HAE = △KAE (ch-gn)
=> AH = AK (2 cạnh tương ứng)
Xét △EKC vuông tại K có: KC < EC (quan hệ cạnh)
Ta có: AC = AK + KC = AH + KC < AH + EC
Xét △HBA vuông tại H có: AH < AB (quan hệ cạnh)
Ta có: AH + BC = AH + EC + BE > AC + BE = AC + AB
Bài 1:
+ Vì E là hình chiếu của B trên \(AM\left(gt\right)\)
=> \(BE\perp AM.\)
=> \(\widehat{BEM}=90^0\)
=> \(\Delta BEM\) vuông tại \(E.\)
=> Cạnh huyền \(BM\) là cạnh lớn nhất (tính chất tam giác vuông).
=> \(BM>BE\) (1).
+ Vì F là hình chiếu của C trên \(AM\left(gt\right)\)
=> \(CF\perp AM.\)
=> \(\widehat{CFM}=90^0\)
=> \(\Delta CFM\) vuông tại \(F.\)
=> Cạnh huyền \(CM\) là cạnh lớn nhất (tính chất tam giác vuông).
=> \(CM>CF\) (2).
Cộng theo vế (1) và (2) ta được:
\(BM+CM>BE+CF\)
Mà \(BM+CM=BC\left(gt\right).\)
=> \(BC>BE+CF\)
Hay \(BE+CF< BC\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 4 nè e :)) Phải nói rằng bài của em quá khó luôn !!
Cho tam giác ABC, kẻ AH, BK vuông góc với BC, AC tại H, K, tìm số đo các góc A, B, C - minh dương
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
a: Ta có: ΔAHC vuông tại H
nen AC>AH
Ta co: ΔAHB vuông tạiH
nên AB>AH
b: AB+AC>HA+AH=2HA
nên AH<1/2(AB+AC)