cho a,b,c là ba số thực khác 0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)chung minh:
\(\frac{1}{a^{2015}}+\frac{1}{b^{2015}}+\frac{1}{c^{2015}}=\frac{1}{a^{2015}+b^{2015}+c^{2015}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2015}\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{2015}\)
\(\Rightarrow2015\left(ab+bc+ac\right)=abc\)
mà a+b+c=2015 \(\Rightarrow\left(a+b+c\right)\left(ab+bc+ac\right)-abc=0\)
\(\Leftrightarrow\left(ab+bc\right)\left(a+b+c\right)+ac\left(a+b+c\right)-abc=0\)
\(\Leftrightarrow b\left(a+c\right)\left(a+b+c\right)+ac\left(a+c\right)+abc-abc=0\)
\(\Leftrightarrow\left(a+c\right)\left(ab+b^2+bc+ac\right)=0\)
\(\Leftrightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
\(\Rightarrow a+c=0\Rightarrow b=2015;b+c=0\Rightarrow a=2015;a+c=0\Rightarrow b=2015\)
VẬy.......
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{\left(a+b+c\right)c}\)
\(\Leftrightarrow\left(a+b\right)\left(a+b+c\right)c=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[c\left(a+c\right)+b\left(a+c\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
Tự làm nốt
Từ gt , ta có :
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Rightarrow0=\left(a+b\right)\left(ca+cb+c^2\right)-\left[-\left(a+b\right)ab\right]=\left(a+b\right)\left(ca+cb+c^2+ab\right)=\left(a+b\right)\left(c+a\right)\left(c+b\right)\)
\(\Rightarrow a+b=0\) hoặc \(c+a=0\) . Gỉa sử \(a=-b\) thì \(a^{15}=-b^{15}\) nên \(a^{15}+b^{15}=0\)
\(\Rightarrow N=0\)
Từ gt,ta có :\(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\Leftrightarrow\frac{a+b}{ab}=\frac{-a-b}{c\left(a+b+c\right)}\Rightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
=> 0 = (a + b)(ca + cb + c2) - [-(a + b)ab] = (a + b)(ca + cb + c2 + ab) = (a + b)(c + a)(c + b)
=> a + b = 0 hoặc c + a = 0 hay c + b = 0.Giả sử a = -b thì a15 = -b15 nên a15 + b15 = 0 => N = 0