Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M (M khác B), trên tia đối của CB lấy điểm N sao cho
BM=CN
a/ Chứng minh \(\Delta ABM=\Delta ACN\)
b/ Kẻ \(BH\perp AM\); \(CK\perp AN\left(H\in AM;K\in AN\right)\)Chứng minh AH=AK
c/Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
d/Biết \(\widehat{MAN}=70^o\). Tính số đo góc BOC.
a)Ta có:
△ABC cân tại A⇒\(\widehat{ABC}=\widehat{ACB}\)
\(\Rightarrow180^0-\widehat{ABC}=180^0-\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
Xét △ABM và △ACN có:
AB=AC (gt)
\(\widehat{ABM}=\widehat{ACN}\) (cmt)
BM=CN (gt)
⇒△ABM = △ACN (cgc)
b)Từ △ABM = △ACN (câu a)
⇒\(\widehat{AMB}=\widehat{ANC}\)(2 góc tương ứng) hay \(\widehat{HMB}=\widehat{KNC}\)
Xét △CKN vuông tại K và △BHM vuông tại H, ta có:
CN=BM (gt)
\(\widehat{KNC}=\widehat{HMB}\) (cmt)
⇒△CKN= △BHM (cạnh huyền- góc nhọn)
⇒CK=BH (2 cạnh tương ứng)
Xét △CKA vuông tại K và △BHA vuông tại H, ta có:
AC=AB (gt)
CK=BH (cmt)
⇒△CKA= △BHA (cạnh huyền- cạnh góc vuông)
⇒KA=HA (2 cạnh tương ứng)
c)Từ △CKN= △BHM (câu b)
⇒\(\widehat{NCK}=\widehat{MBH}\) (2 góc tương ứng)
Mà \(\widehat{NCK}=\widehat{BCO}\)(đối đỉnh); \(\widehat{MBH}=\widehat{CBO}\)(đối đỉnh)
⇒\(\widehat{BCO}=\widehat{CBO}\) ⇒△OBC cân tại O
d)△ABM = △ACN (câu a) ⇒AM=AN (2 cạnh tương ứng)
⇒△AMN cân tại A
\(\widehat{MAN}=70^0\Rightarrow\widehat{ANM}=\widehat{AMN}=\frac{180^0-\widehat{MAN}}{2}=\frac{180^0-70^0}{2}=\frac{110^0}{2}=55^0\)
\(\Rightarrow\widehat{NCK}=\widehat{MBH}=180^0-\left(90^0+55^0\right)=180^0-145^0=35^0\Rightarrow\widehat{OCB}=\widehat{OBC}=35^0\Rightarrow\widehat{BOC}=110^0\)