Tam giác ABC vuông cân tại A có AD là trung tuyến. Trên đoạn thẳng DC lấy điểm H. Hạ BE và CF vuông góc với đường thẳng AH (E, F thuộc đường thẳng AH).
a. CMR: BE = AF
c. CMR: tam giác DEF vuông cân tại D.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác ABE và tam giác CAF có:
\(\widehat{AEB}=\widehat{CFA}\left(=90^o\right)\)
AB = CA
\(\widehat{BAE}=\widehat{ACF}\) (Cùng phụ với góc \(\widehat{FAC}\) )
\(\Rightarrow\Delta ABE=\Delta CAF\) (Cạnh huyền - góc nhọn)
\(\Rightarrow BE=AF\)
b) Do tam giác ABC vuông cân nên trung tuyến AD đồng thời là đường cao.
Xét tam giác BAH có BE và AD là các đường cao nên G là trực tâm
Vậy thì \(HG\perp AB\)
Lại có \(AC\perp AB\) nên GH // AC.
c) Do \(\Delta ABE=\Delta CAF\Rightarrow\widehat{ABE}=\widehat{CAF}\Rightarrow\widehat{DBE}=\widehat{DAF}\)
(Cùng bằng hiệu của 45o trừ đi hai góc trên)
Tam giác ABC vuông cân nê DB = DA = DC
Vậy thì \(\Delta BDE=\Delta ADF\left(c-g-c\right)\)
\(\Rightarrow DE=DF;\widehat{BDE}=\widehat{ADF}\)
\(\Rightarrow\widehat{GDE}=\widehat{HDF}\Rightarrow\widehat{GDH}=\widehat{EDF}\Rightarrow\widehat{EDF}=90^o\)
Suy ra tam giác DEF vuông cân tại D.
d) Ta thấy ngay \(\Delta GDE=\Delta HDF\left(g-c-g\right)\)
\(\Rightarrow GD=HD\)
Kẻ GM // EH (M thuộc DH)
Ta có ngay GM < EH
Lại có GD < GM (Quan hệ đường vuông góc đường xiên)
nên DH < HE