giải phương trình ( đoán nghiệm)
-3x4+20x3+35x2-10x+4=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình 35x2 – 37x + 2 = 0
Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = c/a = 2/35.
\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)
\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)
\(\Leftrightarrow x=0\)
\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;1\right)\)
a) Phương trình 35 x 2 – 37 x + 2 = 0
Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x 1 = 1 ; x 2 = c / a = 2 / 35 .
b) Phương trình 7 x 2 + 500 x – 507 = 0
Có a = 7; b = 500; c = -507 ⇒ a + b + c = 7 + 500 – 507 = 0
⇒ Phương trình có nghiệm x 1 = 1 ; x 2 = c / a = - 507 / 7 .
c) Phương trình x 2 – 49 x – 50 = 0
Có a = 1; b = -49; c = -50 ⇒ a – b + c = 1 – (-49) – 50 = 0
⇒ Phương trình có nghiệm x 1 = - 1 ; x 2 = - c / a = 50 .
d) Phương trình 4321 x 2 + 21 x – 4300 = 0
Có a = 4321; b = 21; c = -4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0
⇒ Phương trình có nghiệm x 1 = - 1 ; x 2 = - c / a = 4300 / 4321 .
Ta có : \(x^4+2x^3-10x^2+10x-3=y^2\)
\(\Leftrightarrow\left(x^4+2x^3-3\right)-\left(10x^2-10x\right)=y^2\)
\(\Leftrightarrow\left(x-1\right).\left(x^3+3x^2-7x+3\right)=y^2\)
\(\Leftrightarrow\left(x-1\right)^2.\left(x^2+4x-3\right)=y^2\)
Vì \(x,y\inℤ\) nên y2 là số chính phương khi
x2 + 4x - 3 là số chính phương
Đặt x2 + 4x - 3 = t2
\(\Leftrightarrow\left(x+t+2\right).\left(x-t+2\right)=7\)
Ta có bảng
x + t + 2 | 1 | 7 | -1 | -7 |
x - t + 2 | 7 | 1 | -7 | -1 |
x | 2 | 2 | -6 | -6 |
t | -3 | 3 | 3 | -3 |
Ta được x = 2 ; x = -6 thỏa
Với x = 2 <=> y = \(\pm3\)
Với x = -6 <=> y = \(\pm21\)
(II):
Xét: (d): 3x – 2y = 1 hay (d):
(d’): -6x + 4y = 0 hay (d’):
Ta có: a = a’ ; b ≠ b’ ⇒ (d) // (d’)
⇒ Hệ (II) vô nghiệm.
a) x 4 – 5 x 2 + 4 = 0 ( 1 )
Đặt x 2 = t, điều kiện t ≥ 0.
Khi đó (1) trở thành : t 2 – 5 t + 4 = 0 ( 2 )
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm t 1 = 1 ; t 2 = c / a = 4
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ x 2 = 1 ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ x 2 = 4 ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
b) 2 x 4 – 3 x 2 – 2 = 0 ; ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 2 t 2 – 3 t – 2 = 0 ( 2 )
Giải (2) : Có a = 2 ; b = -3 ; c = -2
⇒ Δ = ( - 3 ) 2 - 4 . 2 . ( - 2 ) = 25 > 0
⇒ Phương trình có hai nghiệm
Chỉ có giá trị t 1 = 2 thỏa mãn điều kiện.
+ Với t = 2 ⇒ x 2 = 2 ⇒ x = √2 hoặc x = -√2;
Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.
c) 3 x 4 + 10 x 2 + 3 = 0 ( 1 )
Đặt x 2 = t , điều kiện t ≥ 0.
Khi đó (1) trở thành : 3 t 2 + 10 t + 3 = 0 ( 2 )
Giải (2) : Có a = 3; b' = 5; c = 3
⇒ Δ ’ = 5 2 – 3 . 3 = 16 > 0
⇒ Phương trình có hai nghiệm phân biệt
Cả hai giá trị đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
x 4 − 5 x 3 + 8 x 2 − 10 x + 4 = 0 ⇔ ( x 4 + 4 x 2 + 4 ) − 5 x 3 + 4 x 2 − 10 x = 0
⇔ x 2 + 2 2 − 5 x 3 + 10 x + 4 x 2 = 0 ⇔ x 2 + 2 2 − 5 x x 2 + 2 + 4 x 2 = 0
Đặt t = x 2 + 2 ta được t 2 − 5 t x + 4 x 2 = 0 ⇔ t − x t − 4 x = 0
Hay phương trình đã cho ⇔ x 2 − x + 2 x 2 − 4 x + 2 = 0
⇔ x 2 − x + 2 = 0 ( V N ) x 2 − 4 x + 2 = 0 ⇔ x = 2 ± 2
Vậy phương trình không có nghiệm nguyên
Đáp án cần chọn là: D
a) (I):
Xét (d): x + y = 2 hay (d): y = -x + 2 có a = -1; b = 2.
(d’) 3x + 3y = 2 hay (d’): y = -x + có a’ = -1 ; b’ =
Ta có: a = a’ ; b ≠ b’ ⇒ (d) // (d’)
⇒ Hệ (I) vô nghiệm.
b) (II):
Xét: (d): 3x – 2y = 1 hay (d):
(d’): -6x + 4y = 0 hay (d’):
Ta có: a = a’ ; b ≠ b’ ⇒ (d) // (d’)
⇒ Hệ (II) vô nghiệm.
Kiến thức áp dụng
+ Xét hệ (I):
Gọi (d): ax + by = c và (d’): a’x + b’y = c’.
Số nghiệm của hệ (I) phụ thuộc vào vị trí tương đối của (d) và (d’).
(d) cắt (d’) ⇒ hệ (I) có nghiệm duy nhất.
(d) // (d’) ⇒ hệ (I) vô nghiệm
(d) ≡ (d’) ⇒ hệ (I) có vô số nghiệm.
+ Cho đường thẳng (d): y = ax + b và (d’): y = a’x + b’.
(d) cắt (d’) ⇔ a ≠ a’
(d) // (d’) ⇔ a = a’ và b ≠ b’
(d) trùng (d’) ⇔ a = a’ và b = b’.
\(3x^5-10x^4+3x^3+3x^2-10x+3=0\)
___________
Nháp:
Ta nhẩm ngiệm ra được -1 vì tổng các hệ số có số mũ chẵn bằng tổng các hệ số có số mủ lẻ
\(\left\{{}\begin{matrix}3+3-10=-4\\-10+3+3=-4\end{matrix}\right.\)
Theo sơ đồ hoocner ta có:
3 | -10 | 3 | 3 | -10 | 3 | |
-1 | 3 | -13 | 16 | -13 | 3 | 0 |
\(\Rightarrow\left(x-1\right)\left(3x^4-13x^3+16x^2-13x+3\right)\)
Tiếp dùng phương pháp đoán nghiệm ta có thể phân tích thành
\(\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x-1\right)\)
_____________________________________
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)