K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

29 tháng 11 2017

đáp án là bằng nhau

2 tháng 12 2017

ĐK\(\hept{\begin{cases}x^2-8x+5\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\orbr{\begin{cases}x\ge5\\x\le3\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le-5\end{cases}}\\\orbr{\begin{cases}x\ge3\\x\le\frac{3}{2}\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\le-5\\x\ge5\end{cases}hoặc}~x=3\)

2 tháng 2 2020

\(ĐKXĐ:\hept{\begin{cases}x^2-8x+15\ge0\\x^2+2x-15\ge0\\4x^2-18x+18\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le-5\\x=3\end{cases}}\)

Với x = 8 thì (*) thỏa mãn \(\Rightarrow x=3\)là 1 nghiệm của bất phương trình.

\(\left(^∗\right)\Leftrightarrow\sqrt{\left(x-5\right)\left(x-3\right)}+\sqrt{\left(x+5\right)\left(x-3\right)}\le\sqrt{\left(x-3\right)\left(4x-6\right)}\)(1)

Với \(x\ge5\Rightarrow x-3\ge2>0\)hay \(x-3>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{x-5}+\sqrt{x+5}\le\sqrt{4x-6}\)\(\Leftrightarrow2x+2\sqrt{x^2-25}\le4x-6\)

\(\Leftrightarrow\sqrt{x^2-25}\le x-3\Leftrightarrow x^2-25=x^2-6x+9\Leftrightarrow x\le\frac{17}{3}\)

\(\Rightarrow5\le x\le\frac{17}{3}\)

Với \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x\ge8>0\)hay \(x\le-5\Leftrightarrow-x\ge5\Leftrightarrow3-x>0\)thì

\(\left(1\right)\Leftrightarrow\sqrt{\left(5-x\right)\left(3-x\right)}+\sqrt{\left(-5-x\right)\left(3-x\right)}\)

\(\le\sqrt{\left(3-x\right)\left(4-6x\right)}\)

\(\Leftrightarrow\sqrt{5-x}+\sqrt{-x-5}\le\sqrt{6-4x}\)

\(\Leftrightarrow-2x+2\sqrt{\left(5-x\right)\left(-x-5\right)}\le6-4x\)

\(\Leftrightarrow\sqrt{x^2-25}\le3-x\Leftrightarrow x^2-25\le x^2-6x+9\)

\(\Leftrightarrow x\le\frac{17}{3}\Rightarrow x\le-5\)

Từ đó suy ra tập nghiệm của bpt là \(x\in(-\infty;-5]\mu\left\{3\right\}\mu\left[5;\frac{17}{3}\right]\)

17 tháng 12 2019

bạn lên app QuandA hỏi nha, gia sư sẽ cho bạn đáp án chính xác

17 tháng 12 2019

\(DK:x\in\left(-\frac{1}{4};4\right)\)

PT\(\Leftrightarrow\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}+2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}+\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{15}{2}\)

Ta co:

\(\frac{1}{4}\sqrt{4-x}+\frac{1}{\sqrt{4-x}}\ge^{ }1\left(1\right)\)

\(2\sqrt{4x+1}+\frac{2}{\sqrt{4x+1}}\ge4\left(2\right)\)

Dau '=' xay ra khi \(x=0\)

Xet

\(\frac{7}{4}\sqrt{4-x}-\sqrt{4x+1}=\frac{5}{2}\left(3\right)\)

\(\Leftrightarrow\frac{-\frac{7}{4}x}{\sqrt{4-x}+2}-\frac{4x}{\sqrt{4x+1}+1}=0\)

\(\Leftrightarrow x\left(\frac{7}{4\sqrt{4-x}+8}+\frac{4}{\sqrt{4x+1}+1}\right)=0\)

\(\Leftrightarrow x=0\left(n\right)\)

Tuc la \(\left(3\right)\)đúng khi \(x=0\) \(\left(4\right)\)

\(\left(1\right),\left(2\right),\left(4\right)\Rightarrow VT\ge\frac{15}{2}=VP\)

Khi \(x=0\)

13 tháng 4 2023

a) \(\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)-4x\left(x+1\right)\le20\)

\(\Leftrightarrow x^4+4x^2+4-x^4+16-4x^2-4x\le20\)

\(\Leftrightarrow\left(x^4-x^4\right)+\left(4x^2-4x^2\right)-4x+4+16\le20\)

\(\Leftrightarrow-4x+20\le20\)

\(\Leftrightarrow-4x\le20-20\)

\(\Leftrightarrow-4x\le0\)

\(\Leftrightarrow-4x:-4\ge0:-4\)

\(\Leftrightarrow x\ge0\)

Vậy nghiệm của bất phương trình là: \(x\ge0\)

b) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)\ge15\)

\(\Leftrightarrow x^3+8-x^3-2x\ge15\)

\(\Leftrightarrow\left(x^3-x^3\right)+8-2x\ge15\)

\(\Leftrightarrow8-2x\ge15\)

\(\Leftrightarrow-2x\ge15-8\)

\(\Leftrightarrow-2x\ge7\)

\(\Leftrightarrow-2x:-2\le7:-2\)

\(\Leftrightarrow x\le-\dfrac{7}{2}\)

Vậy nghiệm của bất phương trình là \(x\le-\dfrac{7}{2}\)

a: =>x^4+4x^2+4-x^4+16-4x^2-4x<=20

=>-4x+20<=20

=>-4x<=0

=>x>=0

b: =>x^3+8-x^3-2x>=15

=>-2x>=7

=>x<=-7/2

3 tháng 7 2019

Giải :

\(\text{Đ/k : }x^2-4x-6\ge0\)

Bình phương 2 vế phương trình, ta được :

\(x^2-4x-6=15\)

\(\Leftrightarrow x^2-4x-21=0\)

\(\Leftrightarrow\left(x-7\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)

Thế x tìm được vào Đ/k ta thấy cả \(x=7\) và \(x=-3\) đều thỏa mãn.

Vậy \(S=\left\{7;-3\right\}\).

a: =>\(x\cdot\left(\sqrt{3}-1\right)=16\)

=>\(x=\dfrac{16}{\sqrt{3}-1}=8\left(\sqrt{3}+1\right)\)

b: =>(x-căn 15)^2=0

=>x-căn 15=0

=>x=căn 15